Geometric Embeddability of Complexes is $\exists \mathbb R$-complete
暂无分享,去创建一个
Tillmann Miltzow | Mikkel Abrahamsen | Linda Kleist | Tillmann Miltzow | Mikkel Abrahamsen | Linda Kleist
[1] Erik D. Demaine,et al. Who Needs Crossings? Hardness of Plane Graph Rigidity , 2016, Symposium on Computational Geometry.
[2] Debajyoti Mondal,et al. The Complexity of Drawing a Graph in a Polygonal Region , 2018, GD.
[3] J. Dieudonne,et al. A History of Algebraic and Differential Topology, 1900 - 1960 , 1989 .
[4] Tillmann Miltzow,et al. A Universality Theorem for Nested Polytopes , 2019, ArXiv.
[5] Uli Wagner,et al. Embeddability of Simplicial Complexes is Undecidable , 2020, SODA.
[6] Jirí Matousek,et al. Embeddability in the 3-Sphere Is Decidable , 2014, J. ACM.
[7] Tillmann Miltzow,et al. The art gallery problem is ∃ ℝ-complete , 2018, STOC.
[8] Tillmann Miltzow,et al. Framework for ER-Completeness of Two-Dimensional Packing Problems , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
[9] Jirí Matousek,et al. Computing All Maps into a Sphere , 2011, J. ACM.
[10] Yaroslav Shitov,et al. A universality theorem for nonnegative matrix factorizations , 2016, 1606.09068.
[11] Mikhail Skopenkov,et al. Embedding products of graphs into Euclidean spaces , 2008, 0808.1199.
[12] E. R. Kampen. Komplexe in euklidischen Räumen , 1933 .
[13] Jorge L. Ramírez Alfonsín,et al. Knots and links in spatial graphs: A survey , 2005, Discret. Math..
[14] B. Grünbaum. Imbeddings of simplicial complexes , 1969 .
[15] Arnold Shapiro,et al. Obstructions to the Imbedding of a Complex in a Euclidean Space.: I. The First Obstruction , 1957 .
[16] Tillmann Miltzow,et al. Smoothing the gap between NP and ER , 2019, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
[17] Jean Cardinal,et al. Recognition and Complexity of Point Visibility Graphs , 2015, Discret. Comput. Geom..
[18] Mikkel Abrahamsen,et al. Covering Polygons is Even Harder , 2021, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).
[19] Tillmann Miltzow,et al. On Classifying Continuous Constraint Satisfaction problems , 2021, ArXiv.
[20] Salman Parsa,et al. On the Links of Vertices in Simplicial d-Complexes Embeddable in the Euclidean 2d-Space , 2017, Discrete & Computational Geometry.
[21] Arkadiy Skopenkov,et al. Realizability of hypergraphs and Ramsey link theory , 2014 .
[22] A. Skopenkov. Extendability of simplicial maps is undecidable , 2020, ArXiv.
[23] Jirí Matousek,et al. Polynomial-Time Homology for Simplicial Eilenberg–MacLane Spaces , 2012, Found. Comput. Math..
[24] Mikkel Abrahamsen. Training Neural Networks is ∃R-complete , 2021 .
[25] Jirí Matousek,et al. Extendability of Continuous Maps Is Undecidable , 2013, Discret. Comput. Geom..
[26] Brian R. Ummel. The product of nonplanar complexes does not imbed in 4-space , 1978 .
[27] Jirí Matousek,et al. Hardness of embedding simplicial complexes in Rd , 2009, SODA.
[28] Lukas Fins hiy,et al. Generation of Oriented Matroids , 2002 .
[29] Gunter M. Ziegler,et al. Realization spaces of 4-polytopes are universal , 1995 .
[30] Ulrich Brehm,et al. A nonpolyhedral triangulated Möbius strip , 1983 .
[31] Michael H. Freedman,et al. Van Kampen’s embedding Obstruction is incomplete for $2$-Complexes in $\rz^{4}$ , 1994 .
[32] Jürgen Richter-Gebert. Realization Spaces of Polytopes , 1996 .
[33] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[34] Ruta Mehta,et al. ∃R-Completeness for Decision Versions of Multi-Player (Symmetric) Nash Equilibria , 2018, ACM Trans. Economics and Comput..
[35] Jirí Matousek,et al. Polynomial-Time Computation of Homotopy Groups and Postnikov Systems in Fixed Dimension , 2012, SIAM J. Comput..
[36] Arkadiy Skopenkov,et al. Invariants of Graph Drawings in the Plane , 2018, ArXiv.
[37] Arkadiy Skopenkov,et al. A Short Exposition of Salman Parsa’s Theorems on Intrinsic Linking and Non-realizability , 2018, Discret. Comput. Geom..
[38] R. Bing. An Alternative Proof that 3-Manifolds Can be Triangulated , 1959 .
[39] J. L. Bryant. Approximating embeddings of polyhedra in codimension three , 1972 .
[40] D. Timmreck. Realization Problems for Point Configurations and Polyhedral Surfaces , 2015 .
[41] Marcus Schaefer,et al. Complexity of Some Geometric and Topological Problems , 2009, GD.
[42] Jeremy Gray,et al. A history of algebraic and differential topology, 1900–1960: By Jean Dieudonné. Boston and Basel (Birkhäuser). 1989. xxi + 648 pp , 1991 .
[43] Patrice Ossona de Mendez,et al. Realization of Posets , 2002, J. Graph Algorithms Appl..
[44] Colin McDiarmid,et al. Integer realizations of disk and segment graphs , 2011, J. Comb. Theory, Ser. B.
[45] J. Carmesin. Embedding simply connected 2-complexes in 3-space , 2017, 2309.15504.
[46] N. Mnev. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .
[47] Martin Tancer,et al. Hardness of almost embedding simplicial complexes in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$ , 2018, Discrete & Computational Geometry.
[48] B. Grünbaum. Polytopes, graphs, and complexes , 1970 .
[49] Peter W. Shor,et al. Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.
[50] Vittorio Bilò,et al. A Catalog of EXISTS-R-Complete Decision Problems About Nash Equilibria in Multi-Player Games , 2016, STACS.
[51] Egon Schulte,et al. Polyhedral Maps , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[52] Jean Cardinal,et al. Computational Geometry Column 62 , 2015, SIGACT News.
[53] Isabella Novik,et al. A Note on Geometric Embeddings of Simplicial Complexes in a Euclidean Space , 2000, Discret. Comput. Geom..
[54] A. Gundert,et al. On the Complexity of Embeddable Simplicial Complexes , 2018, 1812.08447.
[55] D. Timmreck. Necessary Conditions for Geometric Realizability of Simplicial Complexes , 2007, 0705.1912.
[56] John F. Canny,et al. Some algebraic and geometric computations in PSPACE , 1988, STOC '88.
[57] Marek Krcál,et al. Algorithmic Solvability of the Lifting-Extension Problem , 2013, Discrete & Computational Geometry.