Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System

In the present study, an in-depth investigation on the structural transformation in a mesoporous γ-MnO2 cathode during electrochemical reaction in a zinc-ion battery (ZIB) has been undertaken. A combination of in situ Synchrotron XANES and XRD studies reveal that the tunnel-type parent γ-MnO2 undergoes a structural transformation to spinel-type Mn(III) phase (ZnMn2O4) and two new intermediary Mn(II) phases, namely, tunnel-type γ-ZnxMnO2 and layered-type L-ZnyMnO2, and that these phases with multioxidation states coexist after complete electrochemical Zn-insertion. On successive Zn-deinsertion/extraction, a majority of these phases with multioxidation states is observed to revert back to the parent γ-MnO2 phase. The mesoporous γ-MnO2 cathode, prepared by a simple ambient temperature strategy followed by low-temperature annealing at 200 °C, delivers an initial discharge capacity of 285 mAh g–1 at 0.05 mA cm–2 with a defined plateau at around 1.25 V vs Zn/Zn2+. Ex situ HR-TEM studies of the discharged electr...

[1]  Eleanor I. Gillette,et al.  Activation of a MnO2 cathode by water-stimulated Mg(2+) insertion for a magnesium ion battery. , 2015, Physical chemistry chemical physics : PCCP.

[2]  C. Yoon,et al.  Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide , 2014, Scientific Reports.

[3]  Discharge mechanism of the heat treated electrolytic manganese dioxide cathode in a primary Li/MnO2 battery: An in-situ and ex-situ synchrotron X-ray diffraction study , 2014 .

[4]  B. Cho,et al.  Todorokite-type MnO2 as a zinc-ion intercalating material , 2013 .

[5]  S. Boo,et al.  Mesoporous manganese dioxide cathode prepared by an ambient temperature synthesis for Na-ion batteries , 2013 .

[6]  H. Ahn,et al.  β-MnO 2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries , 2013 .

[7]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[8]  F. Kang,et al.  Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum , 2013 .

[9]  Feiyu Kang,et al.  Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage , 2012 .

[10]  M. Miyayama,et al.  High capacity positive electrodes for secondary Mg-ion batteries , 2012 .

[11]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[12]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[13]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[14]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[15]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[16]  Dawei Song,et al.  Mesoporous nano-Co 3O 4: A potential negative electrode material for alkaline secondary battery , 2011 .

[17]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[18]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[19]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[20]  A. Mauger,et al.  Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping , 2011 .

[21]  A. Rai,et al.  Self-assembled mesoporous manganese oxide with high surface area by ambient temperature synthesis and its enhanced electrochemical properties , 2011 .

[22]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[23]  H. Ahn,et al.  Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance , 2011 .

[24]  M. Doeff,et al.  Structural and electrochemical Investigation of Li(Ni0.4Co0.2-yAlyMn0.4)O2 Cathode Material , 2010 .

[25]  Jinghui Zeng,et al.  Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries , 2010 .

[26]  Chao Yang,et al.  Facile synthesis of α-MnO2 nanorods for high-performance alkaline batteries , 2010 .

[27]  Chao Yang,et al.  Synthesis and electrochemical properties of two types of highly ordered mesoporous MnO2 , 2010 .

[28]  P. Bruce,et al.  Influence of size on the rate of mesoporous electrodes for lithium batteries. , 2010, Journal of the American Chemical Society.

[29]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[30]  Yijun Guo,et al.  Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. , 2009, Chemistry.

[31]  Cara M. Doherty,et al.  Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[32]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[33]  P. Bruce,et al.  Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[34]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[35]  Yong Yang,et al.  Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries , 2008 .

[36]  Jiayan Luo,et al.  Effect of Pore Structure on the Electrochemical Capacitive Performance of MnO2 , 2007 .

[37]  J. Tu,et al.  Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery , 2006 .

[38]  Yu‐Guo Guo,et al.  Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. , 2006, Chemical communications.

[39]  B. Weckhuysen,et al.  X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. , 2006, The journal of physical chemistry. B.

[40]  J. Hanson,et al.  In situ synthesis of mixed-valent manganese oxide nanocrystals: an in situ synchrotron X-ray diffraction study. , 2006, Journal of the American Chemical Society.

[41]  Jun Chen,et al.  Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. , 2006, Inorganic chemistry.

[42]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[43]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[44]  W. O'grady,et al.  Metal Particle Size and Structure of the Metal−Support Interface of Carbon-Supported Platinum Catalysts as Determined with EXAFS Spectroscopy , 2004 .

[45]  Touma B. Issa,et al.  Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery: Part I. A preliminary study , 2004 .

[46]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[47]  S. Sampath,et al.  Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries , 2003 .

[48]  George Srajer,et al.  Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides , 2003 .

[49]  C. Poinsignon,et al.  Structural-chemical disorder of manganese dioxides 1. Influence on surface properties at the solid-electrolyte interface. , 2003, Journal of colloid and interface science.

[50]  Chun-Chen Yang,et al.  Improvement of high-rate capability of alkaline Zn–MnO2 battery , 2002 .

[51]  J. Paulsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[52]  J. Mitchell,et al.  Mn K-edge XANES studies of the La(1-x) A(x) MnO(3) systems (A = Ca, Ba, Pb) , 2001 .

[53]  J. Goodenough,et al.  Effect of ball-milling on 3-V capacity of lithium-manganese oxospinel cathodes , 2001 .

[54]  Y. Chiang,et al.  Electrochemically Induced Cation Disorder and Phase Transformations in Lithium Intercalation Oxides , 2001 .

[55]  J. Goodenough,et al.  Li[Mn2]O4 spinel cathode material showing no capacity fading in the 3 V range , 2000 .

[56]  K. Kordesch,et al.  The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells , 2000 .

[57]  D. Guyomard,et al.  γ-MnO2 for Li batteries: Part II. Some aspects of the lithium insertion process into γ-MnO2 and electrochemically lithiated γ-LixMnO2 compounds , 1999 .

[58]  Yang Shao-Horn,et al.  Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging , 1999 .

[59]  M. Berrettoni,et al.  XAS investigation on polyvalent cation intercalation in V2O5 aerogels. , 1999, Journal of synchrotron radiation.

[60]  D. Aurbach,et al.  Structural and Electrochemical Studies of 3 V Li x MnO2 Cathodes for Rechargeable Li Batteries , 1997 .

[61]  Arumugam Manthiram,et al.  A manganese oxyiodide cathode for rechargeable lithium batteries , 1997, Nature.

[62]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[63]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[64]  W. Smyrl,et al.  QCM and Electrochemical Studies of Li and Zn Intercalation in V6O13(NS) , 1995 .

[65]  J. Pannetier,et al.  Structural and electrochemical properties of the proton / γ-MnO2 system , 1995 .

[66]  Tsutomu Ohzuku,et al.  Why transition metal (di)oxides are the most attractive materials for batteries , 1994 .

[67]  M. Thackeray,et al.  An Investigation of Spinel‐Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries , 1994 .

[68]  W. David,et al.  Ramsdellite-MnO2 for lithium batteries : the ramsdellite to spinel transformation , 1993 .

[69]  A. D. Kock,et al.  The versatility of MnO2 for lithium battery applications , 1993 .

[70]  Elton J. Cairns,et al.  The Secondary Alkaline Zinc Electrode , 1991 .

[71]  J. Goodenough,et al.  Lithium insertion into βMnO2 and the rutile-spinel transformation , 1984 .