Isotropic Multiple Scattering Processes on Hyperspheres

This paper presents several results about isotropic random walks and multiple scattering processes on hyperspheres Sp-1. It allows one to derive the Fourier expansions on Sp-1 of these processes. A result of unimodality for the multiconvolution of symmetrical probability density functions on Sp-1 is also introduced. Such processes are then studied in the case where the scattering distribution is von Mises-Fisher (vMF). Asymptotic distributions for the multiconvolution of vMFs on Sp-1 are obtained. Both Fourier expansion and asymptotic approximation allow us to compute estimation bounds for the parameters of compound cox processes on Sp-1.

[1]  L. Papiez,et al.  Compound-Poisson-process method for the multiple scattering of charged particles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Davor Petrinovic,et al.  Convolution on the $n$-Sphere With Application to PDF Modeling , 2010, IEEE Transactions on Signal Processing.

[3]  Ananthram Swami,et al.  Estimation of directions of arrival of multiple scattered sources , 2001, IEEE Trans. Signal Process..

[4]  G. Letac,et al.  Exponential families of mixed Poisson distributions , 2007 .

[5]  John T. Kent,et al.  Limiting behaviour of the von Mises-Fisher distribution , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  H. Vincent Poor,et al.  Estimating Directional Statistics Using Wavefield Modeling and Mixtures of von-Mises Distributions , 2014, IEEE Signal Processing Letters.

[7]  Volker Michel,et al.  Lectures on Constructive Approximation , 2013 .

[8]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[9]  J. Norris Appendix: probability and measure , 1997 .

[10]  Jean-Jacques Greffet,et al.  Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Pavel S. Serebrennikov Photoelectron statistics , 1999, Other Conferences.

[12]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[13]  L. Zalcman,et al.  Fourier Series and Integrals , 2007 .

[14]  Philipp Hennig,et al.  Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[15]  Jehoshua Bruck,et al.  A random walk model of wave propagation , 2004, IEEE Transactions on Antennas and Propagation.

[16]  Christian Lageman,et al.  Decompounding on Compact Lie Groups , 2010, IEEE Transactions on Information Theory.

[17]  Carl-Fredrik Westin,et al.  Hyperspherical von Mises-Fisher Mixture (HvMF) Modelling of High Angular Resolution Diffusion MRI , 2007, MICCAI.

[18]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[19]  Jochen Geiger,et al.  Applied Stochastic Processes , 2007 .

[20]  Jean-Yves Tourneret,et al.  Pairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities , 2009, Stat. Comput..

[21]  Thomas S. Huang,et al.  Generative model-based speaker clustering via mixture of von Mises-Fisher distributions , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  Ludovic Margerin,et al.  Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  B. Saleh Photoelectron Statistics: With Applications to Spectroscopy and Optical Communication , 2014 .

[24]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[25]  Florent Chatelain,et al.  Von Mises-Fisher approximation of multiple scattering process on the hypersphere , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  V. Michel Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball , 2012 .

[27]  Sumitra Purkayastha,et al.  Simple proofs of two results on convolutions of unimodal distributions , 1998 .

[28]  F. Perrin,et al.  Étude mathématique du mouvement brownien de rotation , 1928 .

[29]  D. Karlis,et al.  Mixed Poisson Distributions , 2005 .

[30]  Raj Rao Nadakuditi,et al.  An iterative, backscatter-analysis based algorithm for increasing transmission through a highly-backscattering random medium , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).