The α2δ subunits of voltage-gated calcium channels.

[1]  A. Dolphin,et al.  Calcium Currents Are Enhanced by α2δ-1 Lacking Its Membrane Anchor , 2012, The Journal of Biological Chemistry.

[2]  A. Dolphin Calcium channel auxiliary alpha(2)delta and beta subunits: trafficking and one step beyond , 2012 .

[3]  A. Dolphin Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond , 2012, Nature Reviews Neuroscience.

[4]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[5]  A. Dolphin,et al.  alpha2delta expression sets presynaptic calcium channel abundance and release probability , 2012, Nature.

[6]  Caleb Davis,et al.  Exome Sequencing of Ion Channel Genes Reveals Complex Profiles Confounding Personal Risk Assessment in Epilepsy , 2011, Cell.

[7]  C. Antzelevitch,et al.  Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). , 2011, European heart journal.

[8]  W. Thoreson,et al.  Lateral Mobility of Presynaptic L-Type Calcium Channels at Photoreceptor Ribbon Synapses , 2011, The Journal of Neuroscience.

[9]  C. Altier,et al.  The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels , 2011, Nature Neuroscience.

[10]  K. Page,et al.  β-Subunits Promote the Expression of CaV2.2 Channels by Reducing Their Proteasomal Degradation , 2011, The Journal of Biological Chemistry.

[11]  A. Dolphin Calcium channel α2δ subunits in epilepsy and as targets for antiepileptic drugs , 2010 .

[12]  Andreas Hess,et al.  A Genome-wide Drosophila Screen for Heat Nociception Identifies α2δ3 as an Evolutionarily Conserved Pain Gene , 2010, Cell.

[13]  Martin Borggrefe,et al.  Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. , 2010, Heart rhythm.

[14]  A. Dolphin,et al.  A new look at calcium channel α2δ subunits , 2010, Current Opinion in Neurobiology.

[15]  A. Dolphin,et al.  The α2δ Ligand Gabapentin Inhibits the Rab11-Dependent Recycling of the Calcium Channel Subunit α2δ-2 , 2010, The Journal of Neuroscience.

[16]  G. Obermair,et al.  Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons , 2010, Neuroscience.

[17]  Wayne A Hendrickson,et al.  Sensor domains of two-component regulatory systems. , 2010, Current opinion in microbiology.

[18]  A. Dolphin,et al.  The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function , 2010, Proceedings of the National Academy of Sciences.

[19]  Peri T Kurshan,et al.  Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions , 2009, Nature Neuroscience.

[20]  Stephen J. Smith,et al.  Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis , 2009, Cell.

[21]  Cori Bargmann,et al.  Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha2-delta subunit UNC-36 , 2009, Nature Neuroscience.

[22]  Sheryl E. Koch,et al.  Targeted disruption of the voltage-dependent calcium channel alpha2/delta-1-subunit. , 2009, American journal of physiology. Heart and circulatory physiology.

[23]  A. Dolphin,et al.  Three-dimensional Structure of CaV3.1 , 2009, The Journal of Biological Chemistry.

[24]  R. Luján,et al.  The Increased Trafficking of the Calcium Channel Subunit α2δ-1 to Presynaptic Terminals in Neuropathic Pain Is Inhibited by the α2δ Ligand Pregabalin , 2009, The Journal of Neuroscience.

[25]  Ying Xu,et al.  Barcodes for genomes and applications , 2008, BMC Bioinformatics.

[26]  C. Taylor,et al.  Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (α2-δ) type 1 protein , 2008, Neuroscience.

[27]  K. Beam,et al.  Alpha2delta1 dihydropyridine receptor subunit is a critical element for excitation-coupled calcium entry but not for formation of tetrads in skeletal myotubes. , 2008, Biophysical journal.

[28]  K. Watschinger,et al.  Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin , 2008, Proceedings of the National Academy of Sciences.

[29]  D. Dickman,et al.  Mutations in a Drosophila α2δ Voltage-Gated Calcium Channel Subunit Reveal a Crucial Synaptic Function , 2008, The Journal of Neuroscience.

[30]  C. Zurzolo,et al.  Characterization of the Properties and Trafficking of an Anchorless Form of the Prion Protein* , 2007, Journal of Biological Chemistry.

[31]  Annette C. Dolphin,et al.  Functional biology of the α 2 δ subunits of voltage-gated calcium channels , 2007 .

[32]  E. Fauman,et al.  Pharmacology and mechanism of action of pregabalin: The calcium channel α2–δ (alpha2–delta) subunit as a target for antiepileptic drug discovery , 2007, Epilepsy Research.

[33]  Hussain Jafri,et al.  An SCN9A channelopathy causes congenital inability to experience pain , 2006, Nature.

[34]  F. Edwards,et al.  The ducky2J Mutation in Cacna2d2 Results in Reduced Spontaneous Purkinje Cell Activity and Altered Gene Expression , 2006, The Journal of Neuroscience.

[35]  E. Zrenner,et al.  Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. , 2006, American journal of human genetics.

[36]  A. Dolphin,et al.  Do voltage-gated calcium channel α2δ subunits require proteolytic processing into α2 and δ to be functional? , 2006 .

[37]  H. Saibil,et al.  The Calcium Channel α2δ-2 Subunit Partitions with CaV2.1 into Lipid Rafts in Cerebellum: Implications for Localization and Function , 2006, The Journal of Neuroscience.

[38]  Peter Nürnberg,et al.  Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. , 2006, Investigative ophthalmology & visual science.

[39]  G. Feng,et al.  Calcium channel α2δ1 subunit mediates spinal hyperexcitability in pain modulation , 2006, Pain.

[40]  Mark E. Williams,et al.  Differential distribution of voltage‐gated calcium channel alpha‐2 delta (α2δ) subunit mRNA‐containing cells in the rat central nervous system and the dorsal root ganglia , 2005 .

[41]  K. Page,et al.  The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels , 2005 .

[42]  A. Dolphin,et al.  Interaction via a Key Tryptophan in the I-II Linker of N-Type Calcium Channels Is Required for β1 But Not for Palmitoylated β2, Implicating an Additional Binding Site in the Regulation of Channel Voltage-Dependent Properties , 2005, The Journal of Neuroscience.

[43]  F. Protasi,et al.  The relative position of RyR feet and DHPR tetrads in skeletal muscle. , 2004, Journal of molecular biology.

[44]  J. Minna,et al.  Cerebellar ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of the Cacna2d2 gene. , 2004, The American journal of pathology.

[45]  Aaron M. Beedle,et al.  The α2δ Auxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels* , 2004, Journal of Biological Chemistry.

[46]  N. Klugbauer,et al.  entla, a Novel Epileptic and Ataxic Cacna2d2 Mutant of the Mouse* , 2004, Journal of Biological Chemistry.

[47]  N. Grigorieff,et al.  Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. , 2003, Journal of molecular biology.

[48]  A. Dolphin,et al.  Calcium Channel α2δ Subunits: Structure, Functions and Target Site for Drugs , 2003 .

[49]  K. Campbell,et al.  Auxiliary subunits: essential components of the voltage-gated calcium channel complex , 2003, Current Opinion in Neurobiology.

[50]  D. Gerhold,et al.  Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases , 2002, Neuroscience.

[51]  A. Dolphin,et al.  3D structure of the skeletal muscle dihydropyridine receptor. , 2002, Journal of molecular biology.

[52]  R. Hynes,et al.  Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. , 2002, Molecular biology of the cell.

[53]  M. D'Andrea,et al.  Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. , 2002, Molecular pharmacology.

[54]  S. Hunt,et al.  The Ducky Mutation in Cacna2d2 Results in Altered Purkinje Cell Morphology and Is Associated with the Expression of a Truncated α2δ-2 Protein with Abnormal Function* , 2002, The Journal of Biological Chemistry.

[55]  K. Shinozaki,et al.  Plant Histidine Kinases: An Emerging Picture of Two-Component Signal Transduction in Hormone and Environmental Responses , 2001, Science's STKE.

[56]  S. Lawson,et al.  Dorsal root ganglion neurons show increased expression of the calcium channel α2δ-1 subunit following partial sciatic nerve injury , 2001 .

[57]  J. Hang,et al.  Tissue-specific Expression and Gabapentin-Binding Properties of Calcium Channel α2δ Subunit Subtypes , 2001, The Journal of Membrane Biology.

[58]  Aj Butcher,et al.  Evidence for Two Concentration-Dependent Processes for β-Subunit Effects on α1B Calcium Channels , 2001 .

[59]  E. Lander,et al.  Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel Current in Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[60]  M. Bünemann,et al.  C-terminal Fragments of the α1C(CaV1.2) Subunit Associate with and Regulate L-type Calcium Channels Containing C-terminal-truncated α1CSubunits* , 2001, The Journal of Biological Chemistry.

[61]  N. Klugbauer,et al.  Calcium Channel α2δ Subunits—Structure and Gabapentin Binding , 2001 .

[62]  L. Sorkin,et al.  Upregulation of Dorsal Root Ganglion α2δ Calcium Channel Subunit and Its Correlation with Allodynia in Spinal Nerve-Injured Rats , 2001, The Journal of Neuroscience.

[63]  J. Barclay,et al.  Genomic organization of the mouse and human α2δ2 voltage-dependent calcium channel subunit genes , 2000, Mammalian Genome.

[64]  L. Aravind,et al.  Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. , 2000, Trends in biochemical sciences.

[65]  E. Stefani,et al.  Expression of the α2δ Subunit Interferes with Prepulse Facilitation in Cardiac L-type Calcium Channels , 2000 .

[66]  J. Minna,et al.  Functional Properties of a New Voltage-dependent Calcium Channel α2δ Auxiliary Subunit Gene (CACNA2D2) * , 2000, The Journal of Biological Chemistry.

[67]  N. Klugbauer,et al.  Neuronal distribution and functional characterization of the calcium channel α2δ‐2 subunit , 2000 .

[68]  F. Hofmann,et al.  Effects of the dihydropyridine receptor subunits γ and α2δ on the kinetics of heterologously expressed L-type Ca2+ channels , 2000, Pflügers Archiv.

[69]  A. Dolphin,et al.  The effect of α2‐δ and other accessory subunits on expression and properties of the calcium channel α1G , 1999 .

[70]  Y. Mori,et al.  Auxiliary subunits operate as a molecular switch in determining gating behaviour of the unitary N‐type Ca2+ channel current in Xenopus oocytes , 1999, The Journal of physiology.

[71]  N. Klugbauer,et al.  Absence of modulation of the expressed calcium channel α1G subunit by α2δ subunits , 1999 .

[72]  Jung-Ha Lee,et al.  Cloning and Expression of a Novel Member of the Low Voltage-Activated T-Type Calcium Channel Family , 1999, The Journal of Neuroscience.

[73]  N. Klugbauer,et al.  Molecular Diversity of the Calcium Channel α2δ Subunit , 1999, The Journal of Neuroscience.

[74]  D. T. Yue,et al.  Mechanism of Auxiliary Subunit Modulation of Neuronal α1E Calcium Channels , 1998, The Journal of general physiology.

[75]  H. Prinz,et al.  Molecular Basis of Drug Interaction with L-Type Ca2+ Channels , 1998, Journal of bioenergetics and biomembranes.

[76]  E. Ríos,et al.  Inactivation of Gating Currents of L-Type Calcium Channels , 1998, The Journal of general physiology.

[77]  E. Stefani,et al.  Modulation of human neuronal α1E-type calcium channel by α2δ-subunit. , 1998, American journal of physiology. Cell physiology.

[78]  Jung-Ha Lee,et al.  Molecular characterization of a neuronal low-voltage-activated T-type calcium channel , 1998, Nature.

[79]  V. U. Dissanayake,et al.  Isolation of the [3H]Gabapentin-Binding Protein/α2δ Ca2+Channel Subunit from Porcine Brain: Development of a Radioligand Binding Assay for α2δ Subunits Using [3H]Leucine , 1998 .

[80]  K. Campbell,et al.  Dissection of Functional Domains of the Voltage-Dependent Ca2+ Channel α2δ Subunit , 1997, The Journal of Neuroscience.

[81]  K. Campbell,et al.  Extracellular Interaction of the Voltage-dependent Ca2+ Channel α2δ and α1 Subunits* , 1997, The Journal of Biological Chemistry.

[82]  E. Stefani,et al.  A Xenopus oocyte beta subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[83]  V. U. Dissanayake,et al.  Spermine modulation of specific [3H]‐gabapentin binding to the detergent‐solubilized porcine cerebral cortex α2δ calcium channel subunit , 1997 .

[84]  F. Hofmann,et al.  Tissue‐specific expression of splice variants of the mouse voltage‐gated calcium channel α2/δ subunit , 1996 .

[85]  L. Birnbaumer,et al.  Subunit composition is a major determinant in high affinity binding of a Ca2+ channel blocker. , 1996, Molecular pharmacology.

[86]  K. Campbell,et al.  Identification of Three Subunits of the High Affinity ω-Conotoxin MVIIC-sensitive Ca2+ Channel* , 1996, The Journal of Biological Chemistry.

[87]  K. Gingrich,et al.  Influence of L-type Ca channel alpha 2/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells. , 1996, The American journal of physiology.

[88]  J. Offord,et al.  The Novel Anticonvulsant Drug, Gabapentin (Neurontin), Binds to the Subunit of a Calcium Channel (*) , 1996, The Journal of Biological Chemistry.

[89]  K. Campbell,et al.  Dual Function of the Voltage-Dependent Ca2+ Channel α2δ Subunit in Current Stimulation and Subunit Interaction , 1996, Neuron.

[90]  D. Tobi,et al.  The α2/δ subunit of voltage sensitive Ca2+ channels is a single transmembrane extracellular protein which is involved in regulated secretion , 1996 .

[91]  N. Dascal,et al.  Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. , 1995, The Journal of physiology.

[92]  A. Dolphin,et al.  Use of site‐directed antibodies to probe the topography of theα2 subunit of voltage‐gated Ca2+ channels , 1995, FEBS letters.

[93]  K. Campbell,et al.  Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit , 1994, Nature.

[94]  F. Hofmann,et al.  Stable co‐expression of calcium channel alpha 1, beta and alpha 2/delta subunits in a somatic cell line. , 1993, The Journal of physiology.

[95]  K. Campbell,et al.  Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. , 1993, Science.

[96]  N. Dascal,et al.  Evidence for the existence of RNA of Ca2+-channel α2/δ subunit in Xenopus oocytes , 1992 .

[97]  H. Chin,et al.  Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel alpha 2 subunit. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M. Biel,et al.  The roles of the subunits in the function of the calcium channel. , 1991, Science.

[99]  K. Campbell,et al.  Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. , 1991, The Journal of biological chemistry.

[100]  M. Hosey,et al.  Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. , 1988, The Journal of biological chemistry.

[101]  K. Campbell,et al.  Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle , 1988, The Journal of cell biology.

[102]  K. Campbell,et al.  Sequence and expression of MRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel , 1988 .

[103]  W. Catterall,et al.  Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[104]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[105]  E. Delpont,et al.  [3H]nitrendipine receptors in skeletal muscle. , 1983, The Journal of biological chemistry.

[106]  R. González-Ramírez,et al.  Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca(2+) channel α(2)δ-1 auxiliary subunit. , 2012, Cell calcium.

[107]  J. S. Parkinson,et al.  Bacterial chemoreceptors: high-performance signaling in networked arrays. , 2008, Trends in biochemical sciences.

[108]  O. Jones,et al.  Kinetics of internalization and degradation of N-type voltage-gated calcium channels: Role of the α2/δ subunit , 2007 .

[109]  A. Dolphin,et al.  Identification of the alpha2-delta-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[110]  * To whom correspondence should be addressed. Running head: Prediction of GPI-anchored proteins Downloaded from , 2005 .

[111]  G. Obermair,et al.  The Role of the Calcium Channel α2δ-1 Subunit in Skeletal Muscle , 2004, Journal of Muscle Research & Cell Motility.

[112]  R. Felix Voltage-dependent Ca2+ channel alpha2delta auxiliary subunit: structure, function and regulation. , 1999, Receptors & channels.

[113]  A. Dolphin The G.L. Brown Prize Lecture. Voltage‐dependent calcium channels and their modulation by neurotransmitters and G proteins , 1995, Experimental physiology.