A Szemerédi-type regularity lemma in abelian groups, with applications
暂无分享,去创建一个
[1] K. F. Roth. On Certain Sets of Integers , 1953 .
[2] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[3] Vojtech Rödl,et al. On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.
[4] R. Graham,et al. Quasi-random subsets of Z n , 1992 .
[5] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[6] Imre Z. Ruzsa,et al. An analog of Freiman's theorem in groups , 1993 .
[7] Imre Z. Ruzsa,et al. Solving a linear equation in a set of integers I , 1993 .
[8] Roy Meshulam,et al. On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions , 1995, J. Comb. Theory, Ser. A.
[9] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[10] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[11] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[12] Jean Bourgain,et al. On Triples in Arithmetic Progression , 1999 .
[13] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[14] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[15] Noga Alon. Testing subgraphs in large graphs , 2002, Random Struct. Algorithms.
[16] Vojtech Rödl,et al. Holes in Graphs , 2001, Electron. J. Comb..
[17] B. Green. Spectral Structure of Sets of Integers , 2004 .
[18] Ben Green,et al. Counting sumsets and sum-free sets modulo a prime , 2004 .
[19] Bryna Kra,et al. Multiple recurrence and nilsequences , 2005 .
[20] Ben Green,et al. Finite field models in additive combinatories , 2004, BCC.