A Szemerédi-type regularity lemma in abelian groups, with applications

Abstract.Szemerédi’s regularity lemma is an important tool in graph theory which has applications throughout combinatorics. In this paper we prove an analogue of Szemerédi’s regularity lemma in the context of abelian groups and use it to derive some results in additive number theory. One is a structure theorem for sets which are almost sum-free. If $$A \subseteq \{1,\ldots,N\}$$ has δ N2 triples (a1, a2, a3) for which a1 + a2 = a3 then A = B ∪ C, where B is sum-free and |C| = δ′N, and $$\delta^{\prime} \rightarrow 0$$ as $$\delta \rightarrow 0.$$ Another answers a question of Bergelson, Host and Kra. If $$\alpha, \epsilon > 0,$$ if $$N\,>\,N_{0}(\alpha, \epsilon)$$ and if $$A \subseteq \{1,\ldots,N\}$$ has size α N, then there is some d ≠ 0 such that A contains at least $$(\alpha^{3}-\epsilon)N$$ three-term arithmetic progressions with common difference d.

[1]  K. F. Roth On Certain Sets of Integers , 1953 .

[2]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[3]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[4]  R. Graham,et al.  Quasi-random subsets of Z n , 1992 .

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  Imre Z. Ruzsa,et al.  An analog of Freiman's theorem in groups , 1993 .

[7]  Imre Z. Ruzsa,et al.  Solving a linear equation in a set of integers I , 1993 .

[8]  Roy Meshulam,et al.  On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions , 1995, J. Comb. Theory, Ser. A.

[9]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[10]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[11]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[12]  Jean Bourgain,et al.  On Triples in Arithmetic Progression , 1999 .

[13]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[14]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[15]  Noga Alon Testing subgraphs in large graphs , 2002, Random Struct. Algorithms.

[16]  Vojtech Rödl,et al.  Holes in Graphs , 2001, Electron. J. Comb..

[17]  B. Green Spectral Structure of Sets of Integers , 2004 .

[18]  Ben Green,et al.  Counting sumsets and sum-free sets modulo a prime , 2004 .

[19]  Bryna Kra,et al.  Multiple recurrence and nilsequences , 2005 .

[20]  Ben Green,et al.  Finite field models in additive combinatories , 2004, BCC.