Fabrication of Carbon Nanotubes

Abstract The remarkable properties of carbon nanotubes give promise of a diverse array of revolutionary technologies and applications. Synthesis remains the key to their development. This article will review many of the current methods used for nanotube synthesis and the recent results towards achieving the goal of large-scale production with rational control of nanotube structure and properties.

[1]  R. L. Wal,et al.  Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment , 2002 .

[2]  M. Terrones,et al.  Electrolytic formation of carbon nanostructures , 1996 .

[3]  Mi Chen,et al.  Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature , 2002 .

[4]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[5]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[6]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[7]  K. Yoshino,et al.  Growth of Carbon Nanotubes on Quartz Plates by Chemical Vapor Deposition Using (Ni, Fe)- Phthalocyanines , 1999 .

[8]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[9]  G. Chen,et al.  Electrolytic conversion of graphite to carbon nanotubes in fused salts , 1998 .

[10]  E. Muñoz,et al.  Study of parameters important for the growth of single wall carbon nanotubes , 2001 .

[11]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[12]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[13]  Pulickel M. Ajayan,et al.  Nanometre-size tubes of carbon , 1997 .

[14]  J. M. Kim,et al.  Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition , 1999 .

[15]  T. Ichihashi,et al.  Growth Dynamics of Single-Wall Carbon Nanotubes Synthesized by CO2 Laser Vaporization , 1999 .

[16]  S. A. Uglov,et al.  A novel CW laser–powder method of carbon single-wall nanotubes production , 2002 .

[17]  Yuegang Zhang,et al.  Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature , 1999 .

[18]  A. Züttel,et al.  Carbon nanotube synthesized on metallic substrates , 2000 .

[19]  T. Ebbesen,et al.  Mechanism of carbon nanotube formation in the arc discharge. , 1995, Physical review. B, Condensed matter.

[20]  Control of growth orientation for carbon nanotubes , 2003 .

[21]  P. Ajayan,et al.  Smallest carbon nanotube , 1992, Nature.

[22]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[23]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[24]  Quan-hong Yang,et al.  Direct growth of macroscopic fibers composed of large diameter SWNTs by CVD , 2003 .

[25]  A. Züttel,et al.  Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism , 2003 .

[26]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[27]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[28]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[29]  Ting Guo,et al.  Surface Segregation in Ni/Co Bimetallic Nanoparticles Produced in Single-Walled Carbon Nanotube Synthesis , 2002 .

[30]  S. Feng,et al.  The formation conditions of carbon nanotubes array based on FeNi alloy island films , 1999 .

[31]  Y. Ando Carbon Nanotubes at As-Grown Top Surface of Columnar Carbon Deposit , 1993 .

[32]  M. Shimizu,et al.  New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres , 2001 .

[33]  Yongfeng Li,et al.  Bamboo-shaped carbon tubes from coal , 2002 .

[34]  Zhifeng Ren,et al.  Growth of large periodic arrays of carbon nanotubes , 2003 .

[35]  Yuegang Zhang,et al.  Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere , 1998 .

[36]  Liming Dai,et al.  Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films , 1999 .

[37]  H. Baik,et al.  Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique , 2002 .

[38]  M. Dresselhaus Carbon nanotubes , 1995 .

[39]  C. R. Martin,et al.  Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production , 1999 .

[40]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[41]  Volkov,et al.  Supercurrents through single-walled carbon nanotubes , 1999, Science.

[42]  M. Yudasaka,et al.  Porous target enhances production of single-wall carbon nanotubes by laser ablation , 2000 .

[43]  A. Govindaraj,et al.  Large aligned-nanotube bundles from ferrocene pyrolysis , 1998 .

[44]  Peter C. Eklund,et al.  Large-Scale Production of Single-Walled Carbon Nanotubes Using Ultrafast Pulses from a Free Electron Laser , 2002 .

[45]  W. Goddard,et al.  CATALYTIC SYNTHESIS OF SINGLE-LAYER CARBON NANOTUBES WITH A WIDE RANGE OF DIAMETERS , 1994 .

[46]  M. Ayers,et al.  Carbon nanostructures in silica aerogel composites , 1995 .

[47]  Michael J. Bronikowski,et al.  Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study , 2001 .

[48]  Milo S. P. Shaffer,et al.  Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method , 2003 .

[49]  T. Kyotani,et al.  Formation of Ultrafine Carbon Tubes by Using an Anodic Aluminum Oxide Film as a Template , 1995 .

[50]  P. Ajayan,et al.  Improving conditions towards isolating single-shell carbon nanotubes , 1994 .

[51]  V. Ryzhkov Carbon nanotube production by a cracking of liquid hydrocarbons , 2002 .

[52]  Carbon nanotubes with single-layer walls , 1995 .

[53]  M. Warzée,et al.  The solid reaction products of the catalytic decomposition of carbon monoxide on iron at 550°C , 1969 .

[54]  C. N. R. Rao,et al.  Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ , 1999 .

[55]  Xinluo Zhao,et al.  Morphology of Carbon Nanotubes Prepared by Carbon Arc , 1996 .

[56]  Ying Chen,et al.  Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing , 2003 .

[57]  Z. Gu,et al.  Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates , 1999 .

[58]  W. Pompe,et al.  Impact of catalyst coarsening on the formation of single-wall carbon nanotubes , 2001 .

[59]  Michael P. Siegal,et al.  Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition , 2002 .

[60]  S. H. Elder,et al.  DENSE ARRAYS OF WELL-ALIGNED CARBON NANOTUBES COMPLETELY FILLED WITH SINGLE CRYSTALLINE TITANIUM CARBIDE WIRES ON TITANIUM SUBSTRATES , 1999 .

[61]  B. Stansfield,et al.  Gas-phase synthesis of SWNT by an atmospheric pressure plasma jet , 2002 .

[62]  Y. Aoyagi,et al.  High-yield production of single-wall carbon nanotubes in nitrogen gas , 2003 .

[63]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[64]  P. Sheng,et al.  Ultra-small single-walled carbon nanotubes and their superconductivity properties , 2003 .

[65]  Nobuo Tanaka,et al.  A Simple and Novel Way to Synthesize Aligned Nanotube Bundles at Low Temperature , 1998 .

[66]  E. Snow,et al.  Simple catalyst for the growth of small-diameter carbon nanotubes , 2002 .

[67]  G. Flamant,et al.  Growth mechanisms and diameter evolution of single wall carbon nanotubes , 2001 .

[68]  C. B. Carter,et al.  Growth and Sintering of Fullerene Nanotubes , 1994, Science.

[69]  A. Mau,et al.  Aligned carbon nanotubes patterned photolithographically by silver , 2003 .

[70]  C. Boothroyd,et al.  Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl , 2003 .

[71]  D. J. Wallis,et al.  A novel route to aligned nanotubes and nanofibres using laser-patterned catalytic substrates , 2000 .

[72]  M. Yumura,et al.  Carbon nanotube synthesis using colloidal solution of metal nanoparticles , 2002 .

[73]  E. Campbell,et al.  Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition , 2003 .

[74]  P. Parilla,et al.  Controlling single-wall nanotube diameters with variation in laser pulse power , 2000 .

[75]  M. Yudasaka,et al.  Single-wall carbon nanotubes: a high yield of tubes through laser ablation of a crude-tube target , 2001 .

[76]  H. Fraser,et al.  Synthesis of single-walled carbon nanotubes in vibrationally non-equilibrium carbon monoxide , 2002 .

[77]  P. Ajayan,et al.  Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis , 1993 .

[78]  Y. Qian,et al.  Synthesis of Carbon Nanotubes and Nanobelts through a Medial-Reduction Method , 2003 .

[79]  H. Baik,et al.  Diameter control of single-walled carbon nanotubes by plasma rotating electrode process , 2002 .

[80]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[81]  Sashiro Uemura,et al.  Ink-jet printing of nanoparticle catalyst for site-selective carbon nanotube growth , 2003 .

[82]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[83]  Kun-Hong Lee,et al.  High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen , 2003 .

[84]  Ana M. Benito,et al.  Production of carbon nanotubes: the light approach , 2002 .

[85]  Mi Chen,et al.  Low-Temperature Synthesis Multiwalled Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition Using CH4–CO2 Gas Mixture , 2003 .

[86]  Sylvain Desilets,et al.  Growth of carbon nanotubes on Ohmically heated carbon paper , 2001 .

[87]  P. Bernier,et al.  Carbon nanotubes: The solar approach , 1998 .

[88]  S. Wind,et al.  Controlled Growth of Single-Walled Carbon Nanotubes from an Ordered Mesoporous Silica Template , 2003 .

[89]  T. Baird,et al.  Structure of Fibrous Carbon , 1971, Nature.

[90]  Akira Tomita,et al.  Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film , 1996 .

[91]  J. Kenny,et al.  Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness , 2002 .

[92]  A. Kasuya,et al.  High-yield synthesis of single-walled carbon nanotubes by gravity-free arc discharge , 2001 .

[93]  Jie Liu,et al.  CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst , 2002 .

[94]  R. Smalley,et al.  Carbon ARC Generation of C 60 , 1990 .

[95]  A. Rinzler,et al.  Self-assembly of tubular fullerenes , 1995 .

[96]  Zikang Tang,et al.  Mono-sized single-wall carbon nanotubes formed in channels of AlPO4-5 single crystal , 1998 .

[97]  C. D. Scott,et al.  Diameter control of single-walled carbon nanotubes using argon–helium mixture gases , 2001 .

[98]  Bingqing Wei,et al.  Growing pillars of densely packed carbon nanotubes on Ni-coated silica , 2002 .

[99]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[100]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[101]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[102]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[103]  Chunyan Wu,et al.  The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature , 2003 .

[104]  J. Bohr,et al.  C60 a new form of carbon , 1992 .

[105]  P. Walker,et al.  Carbon Formation from Carbon Monoxide-Hydrogen Mixtures over Iron Catalysts.I. Properties of Carbon Formed , 1959 .

[106]  Zuhong Lu,et al.  Growth of carbon nanotubules on Fe-loading zeolites and investigation of catalytic active center , 1999 .

[107]  M. Khakani,et al.  Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd:YAG laser vaporization method , 2002 .

[108]  L. Ci,et al.  Effect of acetylene in buffer gas on the microstructures of carbon nanotubes in arc discharge , 2002 .

[109]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[110]  M. Terrones,et al.  Condensed-phase nanotubes , 1995, Nature.

[111]  S. D. Robertson Carbon formation from methane pyrolysis over some transition metal surfaces—I. Nature and properties of the carbons formed , 1970 .

[112]  K. Nordtvedt from newton's moon to einstein's moon , 1996 .

[113]  C. Kingston,et al.  Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume , 2004 .

[114]  E. Muñoz,et al.  Production of high-density single-walled nanotube material by a simple laser-ablation method , 1998 .

[115]  D. Resasco,et al.  Role of Co-W Interaction in the Selective Growth of Single-Walled Carbon Nanotubes from CO Disproportionation , 2003 .

[116]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[117]  J. Ketterson,et al.  Growth and characterization of buckybundles , 1993 .

[118]  T. Ichihashi,et al.  Preparation of high-grade carbon nanotubes by hydrogen arc discharge , 1997 .

[119]  Y. Ando Production of Carbon Nanotubes , 1994 .

[120]  M. Khakani,et al.  Single-wall carbon nanotubes synthesis by means of UV laser vaporization , 2002 .

[121]  T. Den,et al.  Multiwalled carbon nanotubes growth in anodic alumina nanoholes , 1999 .

[122]  Masako Yudasaka,et al.  Mechanism of the Effect of NiCo, Ni and Co Catalysts on the Yield of Single-Wall Carbon Nanotubes Formed by Pulsed Nd:YAG Laser Ablation , 1999 .

[123]  Hui-Ming Cheng,et al.  Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons , 1998 .

[125]  N. Koprinarov,et al.  Fullerene macro structures , 1998 .

[126]  E. Muñoz,et al.  Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation , 2000 .

[127]  J. Alford,et al.  Synthesis of Single-Walled Carbon Nanotubes in Flames , 2000 .

[128]  Otto Zhou,et al.  Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. , 2002, Accounts of chemical research.

[129]  S. Iijima,et al.  Preparation of Carbon Nanotubes by Arc-Discharge Evaporation , 1993 .

[130]  Jeunghee Park,et al.  Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition , 2000 .

[131]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[132]  P. Eklund,et al.  Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes , 1998 .

[133]  F. Hennrich,et al.  Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization , 2002 .

[134]  W. Pompe,et al.  Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes , 2002 .

[135]  A. Mau,et al.  Patterned growth of well-aligned carbon nanotubes: A soft-lithographic approach , 2000 .

[136]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[137]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[138]  Daniel E. Resasco,et al.  A Scalable Process for Production of Single-walled Carbon Nanotubes (SWNTs) by Catalytic Disproportionation of CO on a Solid Catalyst , 2002 .

[139]  Daniel E. Resasco,et al.  Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co-Mo catalysts , 2002 .

[140]  R. Chang,et al.  Solid-state synthesis of multiwalled carbon nanotubes , 2003 .

[141]  E. Muñoz,et al.  The influence of the target composition in the structural characteristics of single-walled carbon nanotubes produced by laser ablation , 2001 .

[142]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[143]  S. Seraphin,et al.  Single-walled carbon nanotubes produced at high yield by mixed catalysts , 1994 .

[144]  Yoshinori Ando,et al.  Mass production of single-wall carbon nanotubes by the arc plasma jet method , 2000 .

[145]  J. Ketterson,et al.  Carbon nanotubes synthesized in a hydrogen arc discharge , 1995 .

[146]  R. Kaner,et al.  Rapid Synthesis of Carbon Nanotubes by Solid-State Metathesis Reactions , 2001 .

[147]  P. Parilla,et al.  A Comparison of Single-Wall Carbon Nanotube Production Using Continuous Wave and Pulsed Laser Vaporization , 1998 .

[148]  S. Sinnott,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2001 .

[149]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.