On the problem of deciding if a polyomino tiles the plane by translation
暂无分享,去创建一个
[1] Dan Gusfield,et al. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .
[2] S. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .
[3] Laurent Vuillon,et al. An algorithm for deciding if a polyomino tiles the plane , 2007, RAIRO Theor. Informatics Appl..
[4] Herbert Freeman,et al. On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..
[5] Robert L. Berger. The undecidability of the domino problem , 1966 .
[6] Jens Stoye,et al. Linear time algorithms for finding and representing all the tandem repeats in a string , 2004, J. Comput. Syst. Sci..
[7] Jan van Leeuwen,et al. Arbitrary versus Periodic Storage Schemes and Tessellations of the Plane Using One Type of Polyomino , 1984, Inf. Control..
[8] Tero Harju,et al. Combinatorics on Words , 2004 .
[9] Y. Gurevich,et al. Remarks on Berger's paper on the domino problem , 1972 .
[10] Maurice Nivat,et al. Salient and Reentrant Points of Discrete Sets , 2003, Electron. Notes Discret. Math..
[11] S. W. Golomb,et al. Checker Boards and Polyominoes , 1954 .
[12] Achille J.-P. Braquelaire,et al. Euclidean Paths: A New Representation of Boundary of Discrete Regions , 1999, Graph. Model. Image Process..
[13] M. Lothaire,et al. Applied Combinatorics on Words , 2005 .
[14] Danièle Beauquier,et al. On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..