Screen printed electrochemical platforms for pH sensing.

We explore the possible use of screen printing technology for fabricating disposable electrochemical platforms for the sensing of pH. These screen printed pH sensors incorporate the pH sensitive phenanthraquinone moiety which undergoes a Nernstian potential shift with pH, and the pH insensitive dimethylferrocene which acts as an internal reference. This generic approach offers a calibration-less and reproducible approach for portable pH measurements with the possibility of miniaturisation allowing incorporation into existing sensing devices. The advantages, limitations and future prospects of this fabrication approach for producing electrochemical platforms for pH sensing are also discussed.

[1]  Rashid O. Kadara,et al.  Manufacturing electrochemical platforms: Direct-write dispensing versus screen printing , 2008 .

[2]  Craig E. Banks,et al.  Characterisation of commercially available electrochemical sensing platforms , 2009 .

[3]  G M Whitesides,et al.  Molecular Self-Assembly of Two-Terminal, Voltammetric Microsensors with Internal References , 1991, Science.

[4]  N. Lawrence,et al.  Derivatised carbon powder electrodes: reagentless pH sensors. , 2004, Talanta.

[5]  M. Pagels,et al.  Triple Component Carbon Epoxy pH Probe , 2007 .

[6]  H. Kahlert Functionalized carbon electrodes for pH determination , 2008 .

[7]  T. Jones,et al.  Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  Nathan S Lawrence,et al.  Molecular anchoring of anthracene-based copolymers onto carbon nanotubes: enhanced pH sensing. , 2007, Talanta.

[9]  N. Lawrence,et al.  Anthraquinone-derivatised carbon powder: reagentless voltammetric pH electrodes. , 2003, Talanta.

[10]  N. Lawrence,et al.  A Vinylanthracene and Vinylferrocene‐Containing Copolymer: A New Dual pH/Sulfide Sensor , 2006 .

[11]  A. Killard,et al.  Physical Characterizations of a Screen‐Printed Electrode for Use in an Amperometric Biosensor System , 2001 .

[12]  Valerie Lafitte,et al.  Anthraquinone–ferrocene film electrodes: Utility in pH and oxygen sensing , 2008 .

[13]  C. E. Walker,et al.  Investigation of Airbrushing for Fabricating Microelectrodes in Microfluidic Devices , 2008 .

[14]  N. Lawrence,et al.  Exploring Alkylated Ferrocene Sulfonates as Electrocatalysts for Sulfide Detection , 2007 .

[15]  N. Lawrence,et al.  Sulfide sensing via differential counter ion diffusion rates through redox-modulated poly(vinylferrocene) microparticles , 2006 .

[16]  Anthony Turner,et al.  On the use of screen- and ink-jet printing to produce amperometric enzyme electrodes for lactate☆ , 1996 .

[17]  N. Lawrence,et al.  Abrasively immobilised multiwalled carbon nanotube agglomerates: a novel electrode material approach for the analytical sensing of pH. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.