Nonparametric forecasting: a comparison of three kernel-based methods

In this paper the use of three kernel-based nonparametric forecasting methods - the conditional mean, the conditional median, and the conditional mode -is explored in detail. Several issues related to the estimation of these methods are discussed, including the choice of the bandwidth and the type of kernel function. The out-of-sample forecasting performance of the three nonparametric methods is investigated using 60 real time series. We find that there is no superior forecast method for series having approximately less than 100 observations. However, when a time series is long or when its conditional density is bimodal there is quite a difference between the forecasting performance of the three kernel-based forecasting methods.

[1]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[2]  D. Tjøstheim,et al.  Identification of nonlinear time series: First order characterization and order determination , 1990 .

[3]  E. Nadaraya On Estimating Regression , 1964 .

[4]  P. Doukhan Mixing: Properties and Examples , 1994 .

[5]  G. Collomb Propriétés de convergence presque complète du prédicteur à noyau , 1984 .

[6]  Ali Gannoun Prédiction non paramétrique : médianogramme et méthode du noyau en estimation de la médiane conditionnelle , 1991 .

[7]  Alan Pankratz,et al.  Forecasting with Dynamic Regression Models: Pankratz/Forecasting , 1991 .

[8]  S. Yakowitz Nonparametric Density Estimation, Prediction, and Regression for Markov Sequences , 1985 .

[9]  Rob J. Hyndman,et al.  Highest‐density forecast regions for nonlinear and non‐normal time series models , 1995 .

[10]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[11]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[12]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[13]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[14]  M. A. Wincek Forecasting With Dynamic Regression Models , 1993 .

[15]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[16]  D. Pham,et al.  Bilinear markovian representation and bilinear models , 1985 .

[17]  H. Akaike Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Processes , 1974 .

[18]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[19]  M. Delecroix,et al.  Non‐parametric vs parametric forecasting in time series: A computational point of view , 1993 .

[20]  W. Härdle,et al.  A note on prediction via estimation of the conditional mode function , 1986 .

[21]  W. Härdle,et al.  Kernel regression smoothing of time series , 1992 .

[22]  Tuan Pham,et al.  Some mixing properties of time series models , 1985 .

[23]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .