Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids

An energy-based, phase field model is developed for the coupling of two incompressible, immiscible complex fluid phases, in particular a nematic liquid crystal phase in a viscous fluid phase. The model consists of a system of coupled nonlinear partial differential equations for conservation of mass and momentum, phase transport, and interfacial boundary conditions. An efficient and easy-to-implement numerical scheme is developed and implemented to extend two benchmark fluid mechanical problems to incorporate a liquid crystal phase: filament breakup under the influence of capillary force and the gravity-driven, dripping faucet. We explore how the distortional elasticity and nematic anchoring at the liquid crystal-air interface modify the capillary instability in both problems. For sufficiently weak distortional elasticity, the effects are perturbative of viscous fluid experiments and simulations. However, above a Frank elasticity threshold, the model predicts a transition to the beads-on-a-string phenomenon associated with polymeric fluid filaments.

[1]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[2]  Amy Q. Shen,et al.  Liquid crystal droplet production in a microfluidic device , 2006 .

[3]  B Jerome,et al.  Surface effects and anchoring in liquid crystals , 1991 .

[5]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  NOEL J. WALKINGTON,et al.  An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2001 .

[7]  Jie Shen,et al.  Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method , 2006, J. Comput. Phys..

[8]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[9]  V. L. Berdichevskiĭ Variational principles of continuum mechanics , 2009 .

[10]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[11]  George Biros,et al.  A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D , 2009, J. Comput. Phys..

[12]  Yuriko Renardy,et al.  Development and implementation of VOF-PROST for 3D viscoelastic liquid–liquid simulations , 2006 .

[13]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[14]  T. Hou,et al.  Numerical Study of Free Interface Problems Using Boundary Integral Methods , 1998 .

[15]  Jie Shen,et al.  On liquid crystal flows with free-slip boundary conditions , 2001 .

[16]  Xiaofeng Yang,et al.  Journal of Non-newtonian Fluid Mechanics Shear Cell Rupture of Nematic Liquid Crystal Droplets in Viscous Fluids , 2011 .

[17]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[18]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[19]  Jacob Klein,et al.  Shear of molecularly confined liquid crystals. 1. Orientation and transitions under confinement , 1997 .

[20]  A. Lamura,et al.  A lattice Boltzmann model of ternary fluid mixtures , 1995 .

[21]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[22]  F. M. Leslie,et al.  SOME CONSTITUTIVE EQUATIONS FOR ANISOTROPIC FLUIDS , 1966 .

[23]  Y. Brenier The least action principle and the related concept of generalized flows for incompressible perfect fluids , 1989 .

[24]  Jens Eggers,et al.  The final stages of capillary break-up of polymer solutions , 2012 .

[25]  J. L. Ericksen,et al.  Anisotropic fluids , 1959 .

[26]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[27]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[28]  Mitsumasa Iwamoto,et al.  Homeotropic-planar anchoring transition induced by trans-cis isomerization in ultrathin polyimide Langmuir-Blodgett films , 2003 .

[29]  Qiang Zhang,et al.  Front tracking in two and three dimensions , 1998 .

[30]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[31]  Xiaofeng Yang,et al.  Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows , 2010 .

[32]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[33]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[34]  J. Cooper-White,et al.  Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration , 2006 .

[35]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[36]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[37]  S. Osher A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations , 1993 .

[38]  Jie Shen,et al.  An Energetic Variational Formulation with Phase Field Methods for Interfacial Dynamics of Complex Fluids: Advantages and Challenges , 2005 .

[39]  Jie Shen,et al.  An Efficient Spectral-Projection Method for the Navier–Stokes Equations in Cylindrical Geometries: I. Axisymmetric Cases , 1998 .

[40]  Fanghua Lin,et al.  On nematic liquid crystals with variable degree of orientation , 1991 .

[41]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[42]  V. Cristini,et al.  Theory and numerical simulation of droplet dynamics in complex flows--a review. , 2004, Lab on a chip.

[43]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[44]  Jie Shen,et al.  Viscoelastic effects on drop deformation in steady shear , 2005, Journal of Fluid Mechanics.

[45]  Victor L. Berdichevsky,et al.  Variational Principles of Continuum Mechanics , 2009 .

[46]  J. Ericksen,et al.  Poiseuille flow of certain anisotropic fluids , 1961 .

[47]  Mitchell Luskin,et al.  Minimum Energy for Liquid Crystals: Computational Results , 1986 .

[48]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[49]  Jie Shen,et al.  An Efficient Spectral-Projection Method for the Navier-Stokes Equations in Cylindrical Geometries , 2002 .

[50]  James M. Keller,et al.  Lattice-Gas Cellular Automata: Inviscid two-dimensional lattice-gas hydrodynamics , 1997 .

[51]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[52]  Oliver G. Harlen,et al.  Viscoelasticity in inkjet printing , 2010 .

[53]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[54]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[55]  Gretar Tryggvason,et al.  A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations , 2003 .

[56]  Daniel Coutand,et al.  Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals , 2001 .

[57]  K. Ebihara,et al.  Numerical simulation of coalescence and breakup of rising droplets , 2003 .

[58]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[59]  W. H. Reid,et al.  Hydrodynamic Stability: Contents , 2004 .

[60]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[61]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[62]  Gareth H. McKinley,et al.  Formation of beads-on-a-string structures during break-up of viscoelastic filaments , 2010 .

[63]  Theo G. Theofanous,et al.  The lattice Boltzmann equation method: theoretical interpretation, numerics and implications , 2003 .

[64]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[65]  Xiaofeng Yang,et al.  Error analysis of stabilized semi-implicit method of Allen-Cahnequation , 2009 .

[66]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[67]  Howard A. Stone,et al.  Dynamics of Drop Deformation and Breakup in Viscous Fluids , 1994 .

[68]  J. M. Rallison The Deformation of Small Viscous Drops and Bubbles in Shear Flows , 1984 .