SPLASH-SXDF Multi-wavelength Photometric Catalog

We present a multi-wavelength catalog in the Subaru/XMM-Newton Deep Field (SXDF) as part of the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). We include the newly acquired optical data from the Hyper-Suprime-Cam Subaru Strategic Program, accompanied by IRAC coverage from the SPLASH survey. All available optical and near-infrared data is homogenized and resampled on a common astrometric reference frame. Source detection is done using a multi-wavelength detection image including the u-band to recover the bluest objects. We measure multi-wavelength photometry and compute photometric redshifts as well as physical properties for ~1.17 million objects over ~4.2 deg^2, with ~800,000 objects in the 2.4 deg^2 HSC-Ultra-Deep coverage. Using the available spectroscopic redshifts from various surveys over the range of 0 < z < 6, we verify the performance of the photometric redshifts and we find a normalized median absolute deviation of 0.023 and outlier fraction of 3.2%. The SPLASH-SXDF catalog is a valuable, publicly available resource, perfectly suited for studying galaxies in the early universe and tracing their evolution through cosmic time.

[1]  S. Okamura,et al.  To Appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE DISCOVERY OF PRIMEVAL LARGE-SCALE STRUCTURES WITH FORMING CLUSTERS AT REDSHIFT 6 1 , 2004 .

[2]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[3]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[4]  J. Newman,et al.  SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2012, 1203.2611.

[5]  M. Bremer,et al.  High-redshift galaxies and low-mass stars , 2014, 1401.6822.

[6]  J. Dunlop,et al.  S-CANDELS: THE SPITZER-COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2015, 1506.01323.

[7]  J. Dunlop,et al.  X-ray groups and clusters of galaxies in the Subaru–XMM Deep Field , 2009, 0912.0039.

[8]  P. Ho,et al.  THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND KS IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH , 2012, 1210.4519.

[9]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[10]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[11]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[12]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[13]  L. Guzzo,et al.  The VIPERS Multi-Lambda Survey. I. UV and near-IR observations, multi-colour catalogues, and photometric redshifts , 2016, 1602.05915.

[14]  F. Mosteller,et al.  Understanding robust and exploratory data analysis , 1985 .

[15]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[16]  A. Cimatti,et al.  DEEP NEAR-INFRARED SPECTROSCOPY OF PASSIVELY EVOLVING GALAXIES AT z ≳ 1.4 , 2012, 1206.1540.

[17]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[18]  Edward L. Fitzpatrick,et al.  An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .

[19]  S. Ravindranath,et al.  Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF , 2017, 1702.03038.

[20]  Jacobo Ebrero,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). III. X-Ray Data , 2008, 0806.2846.

[21]  J. Silverman,et al.  The Subaru-XMM-Newton Deep Survey (SXDS). VIII. Multi-wavelength identification, optical/NIR spectroscopic properties, and photometric redshifts of X-ray sources , 2015, 1505.05487.

[22]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[23]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[24]  Craig Loomis,et al.  Hyper Suprime-Cam , 2012, Other Conferences.

[25]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[26]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[27]  S. Rawlings,et al.  Low‐power radio galaxy environments in the Subaru/XMM–Newton Deep Field at z∼ 0.5 , 2007, 0708.0982.

[28]  M. Sullivan,et al.  The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.

[29]  New insights on the accuracy of photometric redshift measurements , 2001, astro-ph/0110292.

[30]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[31]  Philip J. Tait,et al.  SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.

[32]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[33]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[34]  B. Mobasher,et al.  THE EFFECTS OF THE LOCAL ENVIRONMENT AND STELLAR MASS ON GALAXY QUENCHING TO z ∼ 3 , 2016, 1605.03182.

[35]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[36]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[37]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[38]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[39]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[40]  Toru Yamada,et al.  The Number Density of Old Passively Evolving Galaxies at z = 1 in the Subaru/XMM-Newton Deep Survey Field , 2005, astro-ph/0508594.

[41]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[42]  Marcin Sawicki,et al.  SEDfit: Software for Spectral Energy Distribution Fitting of Photometric Data , 2012, 1210.0285.

[43]  Qi Guo,et al.  EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1–3 IN COSMOS , 2013, 1303.6689.

[44]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[45]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[46]  A. J. Connolly,et al.  Simultaneous Multicolor Detection of Faint Galaxies in the Hubble Deep Field , 1998, astro-ph/9811086.

[47]  R. Davé,et al.  SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS , 2013 .

[48]  A. Fontana,et al.  STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS , 2014, 1412.5180.

[49]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[50]  M. Cirasuolo,et al.  The sizes, masses and specific star formation rates of massive galaxies at 1.3 < z < 1.5: strong evidence in favour of evolution via minor mergers , 2012, 1205.4058.

[51]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[52]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[53]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[54]  Tadafumi Takata,et al.  Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population , 2006, astro-ph/0609529.

[55]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[56]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[57]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[58]  Yukiko Kamata,et al.  Hyper Suprime-Cam: System design and verification of image quality , 2018 .

[59]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[60]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[61]  D. L. Clements,et al.  The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals (PASP, 124, 714, [2012]) , 2012, 1206.4060.

[62]  J. Dunlop,et al.  A remarkably high fraction of strong Lyα emitters amongst luminous redshift 6.0 < z < 6.5 Lyman-break galaxies in the UKIDSS Ultra-Deep Survey , 2012 .

[63]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[64]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[65]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[66]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[67]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[68]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[69]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[70]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[71]  Z. Cai,et al.  A SURVEY OF LUMINOUS HIGH-REDSHIFT QUASARS WITH SDSS AND WISE. I. TARGET SELECTION AND OPTICAL SPECTROSCOPY , 2016, The Astrophysical Journal.

[72]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[73]  Daniel Masters,et al.  The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 , 2017, 1704.06665.

[74]  M. Cirasuolo,et al.  High-velocity outflows from young star-forming galaxies in the UKIDSS Ultra-Deep Survey , 2013, 1304.7276.

[75]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[76]  B. Mobasher,et al.  Cosmic Web of Galaxies in the COSMOS Field: Public Catalog and Different Quenching for Centrals and Satellites , 2016, 1611.05451.

[77]  M. Cirasuolo,et al.  The stellar mass function of the most-massive galaxies at 3 ≤z < 5 in the UKIDSS Ultra Deep Survey , 2010, 1008.5244.

[78]  S. Okamura,et al.  Deep Spectroscopy of Systematically Surveyed Extended Lyα Sources at z ~ 3-5 , 2007, 0705.1494.