CircE: An R implementation of Browne’s circular stochastic process model

In confirmatory analysis of whether data have a circumplex structure, Browne’s (1992) model has played a major role. However, implementation of this model requires a dedicated program, CIRCUM, because the analysis routine is not integrated in any of the most widely used statistical software packages. Hence, data entry and graphical representation of the results require the use of one or more additional programs. We propose a package for the R statistical environment, termed CircE, that can be used to enter or import data, implement Browne’s confirmatory analysis, and graphically represent the results. Using this new software, we put forward a new approach to assess the sustainability of theoretical models when the analysis is carried out at the level of questionnaire items. The CircE package (for either Mac OS X or Windows) and additional files may be downloaded from http://brm.psychonomic-journals.org/content/supplemental.

[1]  R. Luccio,et al.  Assessing the Interpersonal Circumplex Model in Late Childhood , 2012, Assessment.

[2]  P M Bentler,et al.  Bootstrap-corrected ADF test statistics in covariance structure analysis. , 1994, The British journal of mathematical and statistical psychology.

[3]  M. Browne,et al.  Conceptual and Methodological Issues in Testing the Circumplex Structure of Data in Personality and Social Psychology , 1997, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[4]  Richard G. Lomax,et al.  A Beginner's Guide to Structural Equation Modeling , 2022 .

[5]  M. Browne,et al.  Automated Fitting of Nonstandard Models. , 1992, Multivariate behavioral research.

[6]  Kenneth A. Bollen,et al.  Structural Equations with Latent Variables , 1989 .

[7]  J. S. Wiggins,et al.  A psychological taxonomy of trait-descriptive terms: The interpersonal domain. , 1979 .

[8]  A. Shapiro Asymptotic Properties of Statistical Estimators in Stochastic Programming , 1989 .

[9]  Michael W. Browne,et al.  Topics in Applied Multivariate Analysis: COVARIANCE STRUCTURES , 1982 .

[10]  Michael W. Browne,et al.  Circumplex models for correlation matrices , 1992 .

[11]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[12]  A. Shapiro Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints , 1985 .

[13]  M. Browne Asymptotically distribution-free methods for the analysis of covariance structures. , 1984, The British journal of mathematical and statistical psychology.

[14]  J. S. Wiggins,et al.  A dyadic-interactional perspective on the five-factor model. , 1996 .

[15]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[16]  M. Browne,et al.  Alternative Ways of Assessing Model Fit , 1992 .

[17]  J. Block,et al.  Studies in the phenomenology of emotions. , 1957, Journal of abnormal psychology.

[18]  L. Fabrigar,et al.  Reexamining the Circumplex Model of Affect , 2000 .

[19]  K. G. Jöreskog,et al.  Efficient estimation in image factor analysis. , 1969 .

[20]  P. Bentler,et al.  Cutoff criteria for fit indexes in covariance structure analysis : Conventional criteria versus new alternatives , 1999 .

[21]  Xitao Fan,et al.  Sensitivity of Fit Indices to Model Misspecification and Model Types , 2007 .

[22]  R. MacCallum,et al.  Power analysis and determination of sample size for covariance structure modeling. , 1996 .

[23]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..