A guide to using shadowing filters for forecasting and state estimation

[1]  Kevin Judd,et al.  Failures of sequential Bayesian filters and the successes of shadowing filters in tracking of nonlinear deterministic and stochastic systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Kevin Judd,et al.  The Geometry of Model Error , 2008 .

[3]  Kevin Judd,et al.  Forecasting with imperfect models, dynamically constrained inverse problems, and gradient descent algorithms , 2008 .

[4]  K. Judd,et al.  The Quest for a Shady Place: A guide (using shadowing filters for state estimation) , 2008 .

[5]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[6]  Timothy F. Hogan,et al.  The Navy Operational Global Atmospheric Prediction System: , 2006 .

[7]  Matthew Fisher,et al.  On the equivalence between Kalman smoothing and weak‐constraint four‐dimensional variational data assimilation , 2005, Quarterly Journal of the Royal Meteorological Society.

[8]  Florence Rabier,et al.  Overview of global data assimilation developments in numerical weather‐prediction centres , 2005 .

[9]  Leonard A. Smith,et al.  Indistinguishable states II. The imperfect model scenario , 2004 .

[10]  Andrew P. Morse,et al.  DEVELOPMENT OF A EUROPEAN MULTIMODEL ENSEMBLE SYSTEM FOR SEASONAL-TO-INTERANNUAL PREDICTION (DEMETER) , 2004 .

[11]  Kevin Judd,et al.  Gradient free descent: shadowing, and state estimation using limited derivative information , 2004 .

[12]  Kevin Judd,et al.  Toward shadowing in operational weather prediction , 2004 .

[13]  K. Judd Nonlinear state estimation, indistinguishable states, and the extended Kalman filter , 2003 .

[14]  Kevin Judd,et al.  Chaotic-time-series reconstruction by the Bayesian paradigm: right results by wrong methods. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Kevin Judd,et al.  Convergence properties of gradient descent noise reduction , 2002, Physica D: Nonlinear Phenomena.

[16]  William H. Press,et al.  Numerical recipes in C , 2002 .

[17]  Kevin Judd,et al.  Indistinguishable states I.: perfect model scenario , 2001 .

[18]  Roger Daley,et al.  NAVDAS: Formulation and Diagnostics , 2001 .

[19]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[20]  R. Vautard,et al.  Observational Error Structures and the Value of Advanced Assimilation Techniques , 2000 .

[21]  Lai,et al.  Estimating generating partitions of chaotic systems by unstable periodic orbits , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[23]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[24]  Philippe Courtier,et al.  Variational Methods (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[25]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[26]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[27]  Olivier Talagrand,et al.  On extending the limits of variational assimilation in nonlinear chaotic systems , 1996 .

[28]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[29]  L. Mark Berliner,et al.  Likelihood and Bayesian Prediction of Chaotic Systems , 1991 .

[30]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[31]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[32]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[33]  E. Lorenz Deterministic nonperiodic flow , 1963 .