A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome

[1]  T. Itoh,et al.  Targeted base editing in the mitochondrial genome of Arabidopsis thaliana , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Aibin He,et al.  Mitochondrial base editor induces substantial nuclear off-target mutations , 2022, Nature.

[3]  Tony P. Huang,et al.  CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA , 2022, Nature Biotechnology.

[4]  Erwei Zuo,et al.  Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos , 2022, Cell discovery.

[5]  V. Tiranti,et al.  An In Vitro Approach to Study Mitochondrial Dysfunction: A Cybrid Model. , 2022, Journal of Visualized Experiments.

[6]  L. Van Haute,et al.  In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue , 2022, Nature communications.

[7]  Jin-Soo Kim,et al.  Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases , 2022, Nature communications.

[8]  M. Minczuk,et al.  The potential of mitochondrial genome engineering , 2021, Nature Reviews Genetics.

[9]  Bin Shen,et al.  DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome , 2021, Molecular therapy. Nucleic acids.

[10]  Lianfeng Zhang,et al.  Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing , 2021, Cell discovery.

[11]  Vivek Sharma,et al.  Threshold of heteroplasmic truncating MT-ATP6 mutation in reprogramming, Notch hyperactivation and motor neuron metabolism , 2021, Human molecular genetics.

[12]  H. Urlaub,et al.  An in vitro system to silence mitochondrial gene expression , 2021, Cell.

[13]  T. Itoh,et al.  Targeted base editing in the plastid genome of Arabidopsis thaliana , 2021, Nature Plants.

[14]  C. Moraes,et al.  Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo , 2021, Nature Communications.

[15]  S. Karthikeyan,et al.  An atlas of mitochondrial DNA genotype-phenotype associations in the UK Biobank , 2021, Nature Genetics.

[16]  Beum-Chang Kang,et al.  Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases , 2021, Nature Communications.

[17]  Beum-Chang Kang,et al.  Chloroplast and mitochondrial DNA editing in plants , 2021, Nature Plants.

[18]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[19]  J. Stewart Current progress with mammalian models of mitochondrial DNA disease , 2020, Journal of inherited metabolic disease.

[20]  David R. Liu,et al.  A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing , 2020, Nature.

[21]  D. Turnbull,et al.  Mitochondrial Diseases: Hope for the Future , 2020, Cell.

[22]  M. Zeviani,et al.  Expanding the molecular and phenotypic spectrum of truncating MT-ATP6 mutations , 2020, Neurology: Genetics.

[23]  C. Moraes,et al.  MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation , 2018, Nature Medicine.

[24]  Pedro Rebelo-Guiomar,et al.  Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo , 2018, Nature Medicine.

[25]  F. Chapon,et al.  A 2 bp deletion in the mitochondrial ATP 6 gene responsible for the NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. , 2017, Biochemical and biophysical research communications.

[26]  Pedro Rebelo-Guiomar,et al.  Maturation of selected human mitochondrial tRNAs requires deadenylation , 2017, eLife.

[27]  A. Schaller,et al.  A novel mitochondrial ATP6 frameshift mutation causing isolated complex V deficiency, ataxia and encephalomyopathy. , 2017, European journal of medical genetics.

[28]  L. Qian,et al.  Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector , 2017, Scientific Reports.

[29]  Pedro Rebelo-Guiomar,et al.  Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs , 2016, Nucleic acids research.

[30]  B. Suess,et al.  Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. , 2015, ACS synthetic biology.

[31]  Robert W. Taylor,et al.  Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease , 2015, Annals of neurology.

[32]  Vincent Procaccio,et al.  Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming , 2014, Proceedings of the National Academy of Sciences.

[33]  M. Minczuk,et al.  Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations , 2014, EMBO molecular medicine.

[34]  C. Moraes,et al.  Specific elimination of mutant mitochondrial genomes in patient–derived cells by mitoTALENs , 2013, Nature Medicine.

[35]  M. Sharpley,et al.  Mouse mtDNA mutant model of Leber hereditary optic neuropathy , 2012, Proceedings of the National Academy of Sciences.

[36]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[37]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[38]  A. Papa Hope for the future. , 2011, Journal of emergency nursing: JEN : official publication of the Emergency Department Nurses Association.

[39]  Martijn A. Huynen,et al.  TEFM (c17orf42) is necessary for transcription of human mtDNA , 2011, Nucleic acids research.

[40]  Paulina Kolasinska-Zwierz,et al.  Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA , 2010, Nature Protocols.

[41]  E. Ruiz-Pesini,et al.  NARP syndrome in a patient harbouring an insertion in the MT-ATP6 gene that results in a truncated protein , 2008, Journal of Medical Genetics.

[42]  Aaron Klug,et al.  Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA , 2008, Nucleic acids research.

[43]  E. Shoubridge,et al.  Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Srivastava,et al.  Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. , 2001, Human molecular genetics.

[45]  M. King,et al.  Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. , 1989, Science.

[46]  M. Zeviani,et al.  Blue-Native Electrophoresis to Study the OXPHOS Complexes. , 2021, Methods in molecular biology.

[47]  Thuy D Vo,et al.  Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures , 2011, Nature Methods.