CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

[1]  Denis R. Hall,et al.  Power scaling of large‐area transverse radio frequency discharge CO2 lasers , 1989 .

[2]  P. K. Tien,et al.  CW HIGH‐POWER CO2–N2–He LASER , 1965 .

[3]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[4]  Patrick P. Naulleau,et al.  Tradeoffs in mask architecture: dealing with future illumination angular diversity , 2012, Advanced Lithography.

[5]  Howard J. Baker,et al.  Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse rf discharge , 1992 .

[6]  Libor Juha,et al.  ABLATION OF POLY(METHYL METHACRYLATE) BY A SINGLE PULSE OF SOFT X-RAYS EMITTED FROM Z-PINCH AND LASER-PRODUCED PLASMAS , 2002 .

[7]  Takashi Suganuma,et al.  Development of the reliable high power pulsed carbon dioxide laser system for LPP EUV light source , 2011, Advanced Lithography.

[8]  Akira Endo,et al.  LPP EUV light source employing high power C02 laser , 2008, SPIE Advanced Lithography.

[9]  Yoh-Han Pao,et al.  Far-infrared radiation isolator , 1973 .

[10]  Martin C. Weisskopf,et al.  Imaging Performance Of A Normal Incidence X-Ray Telescope Measured At 0.18 keV , 1982, Other Conferences.

[11]  S. Thomas,et al.  Amplification of multiline/multiband CO2 laser pulses , 1975 .

[12]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[13]  A. J. Beaulieu,et al.  TRANSVERSELY EXCITED ATMOSPHERIC PRESSURE CO2 LASERS , 1970 .

[14]  F. Goodwin,et al.  Intracavity CdTe modulators for CO 2 lasers , 1971 .

[15]  Andrzej Bartnik,et al.  Laser-plasma EUV source dedicated for surface processing of polymers , 2011 .

[16]  D. Hall,et al.  A compact sealed waveguide CO2 laser , 1977 .

[17]  W. Bridges,et al.  Characteristics of sealed-off waveguide CO 2 lasers , 1973 .

[18]  Denis R. Hall,et al.  Enhanced peak power and short pulse operation of planar waveguide CO2 lasers , 2001 .

[19]  Akira Sumitani,et al.  Development of the reliable 20 kW class pulsed carbon dioxide laser system for LPP EUV light source , 2011, Advanced Lithography.

[20]  C. R. Phipps,et al.  High‐power isolator for the 10‐μm region employing interband Faraday rotation in germanium , 1976 .

[21]  Igor V. Fomenkov,et al.  LPP EUV source development for HVM , 2006, SPIE Advanced Lithography.

[22]  C. Cerjan,et al.  Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime , 1996 .

[23]  F. Simoni,et al.  Enhanced nonlinear birefringence in hybrid aligned nematics , 1982 .

[24]  C. Patel,et al.  Selective excitation through vibrational energy transfer and optical maser action in N2-CO2 , 1964 .

[25]  Takashi Suganuma,et al.  Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system. , 2012, Optics letters.

[26]  P. Cheo,et al.  ROTATIONAL RELAXATION RATE OF CO2 LASER LEVELS , 1969 .

[27]  H. Shih,et al.  Morphological studies of oval defects in GaAs epitaxial layers grown by molecular beam epitaxy , 1986 .

[28]  Hiroyuki Niino,et al.  Silica nanomachining using laser plasma soft x rays , 2006 .

[29]  J. Underwood,et al.  Soft X-ray imaging with a normal incidence mirror , 1981, Nature.

[30]  R. Rooth,et al.  An independently adjustable multiline AM mode-locked TEA CO2laser , 1983, IEEE Journal of Quantum Electronics.

[31]  Takashi Suganuma,et al.  Spectral characteristics of quantum-cascade laser operating at 10.6 μm wavelength for a seed application in laser-produced-plasma extreme UV source. , 2012, Optics letters.

[32]  D. Nakamura,et al.  Emission characteristics of debris from CO2 and Nd:YAG laser-produced tin plasmas for extreme ultraviolet lithography light source , 2008 .

[33]  Tatsuhiko Sakai,et al.  Q-switched CO2 laser using intense pulsed rf discharge and high-speed rotating chopper , 1995, International Symposium on High Power Laser Systems and Applications.

[34]  P. K. Cheo,et al.  SPONTANEOUS SELF‐PULSING AND CAVITY DUMPING IN A CO2 LASER WITH ELECTRO‐OPTIC Q‐SWITCHING , 1969 .

[35]  Larissa Juschkin Imaging with plasma based extreme ultraviolet sources , 2012, Other Conferences.

[36]  Koichi Toyoda,et al.  Characterization of various Sn targets with respect to debris and fast ion generation , 2007, SPIE Advanced Lithography.

[37]  H. Ohno,et al.  Arsenic stabilization of InP substrates for growth of GaxIn1−xAs layers by molecular beam epitaxy , 1980 .

[38]  Junichi Fujimoto,et al.  Development of Laser-Produced Tin Plasma-Based EUV Light Source Technology for HVM EUV Lithography , 2012 .

[39]  A. Alcock,et al.  Generation and detection of 150‐psec mode‐locked pulses from a multi‐atmosphere CO2 laser , 1974 .

[40]  J A Liddle,et al.  Nanoimaging with a compact extreme-ultraviolet laser. , 2005, Optics letters.

[41]  Padraig Dunne,et al.  Optimizing 13.5nm laser-produced tin plasma emission as a function of laser wavelength , 2007 .

[42]  Armin Bayer,et al.  Direct photo-etching of poly"methyl methacrylate… using focused extreme ultraviolet radiation from a table-top laser-induced plasma source , 2007 .

[43]  Larissa Juschkin,et al.  Defect inspection with an EUV microscope , 2010, European Mask and Lithography Conference.

[44]  Sivanandan S. Harilal,et al.  Analysis, simulation, and experimental studies of YAG and CO2 laser-produced plasma for EUV lithography sources , 2010, Advanced Lithography.

[45]  Bowen Li,et al.  Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma , 2012 .

[46]  A. Bartnik,et al.  EUV micropatterning for biocompatibility control of PET , 2010 .

[47]  J. Nuckolls,et al.  Fusion Power by Laser Implosion , 1974 .

[48]  T. Barbee,et al.  Molybdenum-silicon multilayer mirrors for the extreme ultraviolet. , 1985, Applied optics.

[49]  T. Narusawa,et al.  X‐ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs(001) c (4×4) interface , 1987 .

[50]  Libor Juha,et al.  Micromachining of organic polymers by X-ray photo-etching using a 10Hz laser-plasma radiation source , 2005 .

[51]  R. Yusek,et al.  CO waveguide laser , 1973 .

[52]  A. Offenberger,et al.  Multiline injection mode locking of a transversely excited atmosphere CO2 laser , 1982 .

[53]  T Shimada,et al.  High-speed random access laser tuning. , 1999, Applied optics.

[54]  Andrew G. Glen,et al.  APPL , 2001 .

[55]  Bruno M. La Fontaine,et al.  LPP source system development for HVM , 2011, Advanced Lithography.

[56]  Kunioki Mima,et al.  Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas , 2006 .

[57]  Y. Kaufman Passive-Q-switching at high intensities and high absorber pressures. , 1976, Applied Optics.

[58]  Vivek Bakshi,et al.  EUV Sources for Lithography , 2006 .

[59]  David L. Windt,et al.  Reduction imaging at 14 nm using multilayer‐coated optics: Printing of features smaller than 0.1 μm , 1990 .

[60]  T. Bridges,et al.  CO2 Waveguide Lasers , 2003 .

[61]  Bowen Li,et al.  A 6.7-nm beyond EUV source as a future lithography source , 2012, Advanced Lithography.

[62]  P. Lavigne,et al.  A transversely rf‐excited CO2 waveguide laser , 1977 .

[63]  A. Nath,et al.  Multiline operation of TEA CO2 laser with hot CO2, as an intracavity absorbing medium , 1979 .

[64]  P. Corkum,et al.  Electron‐beam‐controlled transmission of 10‐μm radiation in semiconductors , 1979 .

[65]  É. Tournié,et al.  Note: a high transmission Faraday optical isolator in the 9.2 μm range. , 2011, The Review of scientific instruments.

[66]  Howard J. Baker,et al.  CO2 large‐area discharge laser using an unstable‐waveguide hybrid resonator , 1989 .

[67]  B. Feldman,et al.  Short-pulse multiline and multiband energy extraction in high-pressure CO 2 -laser amplifiers , 1973 .

[68]  S J Czuchlewski,et al.  Broadband gas isolator for high-power CO2 lasers. , 1978, Optics letters.

[69]  Shuichi Fujikawa,et al.  Efficient pulse amplification using a transverse-flow CO2 laser for extreme ultraviolet light source. , 2012, Optics letters.

[70]  Igor V. Fomenkov,et al.  High-power low cost drive laser for LPP source , 2006, SPIE Advanced Lithography.

[71]  M. Piltch Multi-line pulsed CO2 oscillator☆ , 1973 .

[72]  Tatsuo Okada,et al.  Direct Etching of Poly(methyl methacrylate) Using Laser Plasma Soft X-rays , 2010 .

[73]  S. S. Harilal,et al.  The effect of excitation wavelength on dynamics of laser-produced tin plasma , 2011 .

[74]  W. J. Witteman The CO「下2下」 laser , 1987 .

[75]  T. Ejima,et al.  High throughput and wide field of view EUV microscope for blur-free one-shot imaging of living organisms. , 2010, Optics express.

[76]  P. Bélanger,et al.  Stable pulses of variable width from a mode-locked hybrid TEA-CO2 laser. , 1979, Optics letters.

[77]  New representation of Navier-Stokes equations governing self-similar homogeneous turbulence , 1983 .

[78]  A. Hodge,et al.  Note: A method for minimizing oxide formation during elevated temperature nanoindentation. , 2014, The Review of scientific instruments.

[79]  J. Rigden,et al.  HIGH‐POWER LASER ACTION IN CO2–He MIXTURES , 1965 .

[80]  J. Faist,et al.  Quantum cascade laser: a unipolar intersubband semiconductor laser , 1994, Proceedings of IEEE 14th International Semiconductor Laser Conference.

[81]  P. Lavigne,et al.  Passive mode-locking of a large volume tea-CO2 laser using an unstable resonator configuration , 1975 .

[82]  Hideo Hoshino,et al.  High-power pulsed CO2 laser for EUV lithography , 2006, SPIE Advanced Lithography.

[83]  Andrzej Bartnik,et al.  A 50 nm spatial resolution EUV imaging-resolution dependence on object thickness and illumination bandwidth. , 2011, Optics express.

[84]  A. Cummings,et al.  Conversion efficiency of a laser-produced Sn plasma at 13.5 nm, simulated with a one-dimensional hydrodynamic model and treated as a multi-component blackbody , 2005 .

[85]  Takashi Suganuma,et al.  Multiline short-pulse solid-state seeded carbon dioxide laser for extreme ultraviolet employing multipass radio frequency excited slab amplifier. , 2013, Optics letters.