Flow-manipulated, crosslinked collagen gels for use as corneal equivalents.

[1]  M. Matsusaki,et al.  Anisotropic Mechanical Properties of Collagen Hydrogels Induced by Uniaxial-Flow for Ocular Applications , 2011, Journal of biomaterials science. Polymer edition.

[2]  A. Quantock,et al.  Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. , 2010, Structure.

[3]  A. Quantock,et al.  Structural and biochemical aspects of keratan sulphate in the cornea , 2010, Cellular and Molecular Life Sciences.

[4]  Fengfu Li,et al.  Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. , 2009, Biomaterials.

[5]  C. Boote,et al.  The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma , 2009, Progress in Retinal and Eye Research.

[6]  J. T. Henriksson,et al.  Dimensions and morphology of the cornea in three strains of mice. , 2009, Investigative ophthalmology & visual science.

[7]  W. Fledelius,et al.  Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. , 2009, Investigative ophthalmology & visual science.

[8]  R. Iozzo,et al.  Genetic Evidence for the Coordinated Regulation of Collagen Fibrillogenesis in the Cornea by Decorin and Biglycan* , 2009, Journal of Biological Chemistry.

[9]  Fengfu Li,et al.  PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. , 2008, Biomaterials.

[10]  Jeffrey W. Ruberti,et al.  Prelude to corneal tissue engineering – Gaining control of collagen organization , 2008, Progress in Retinal and Eye Research.

[11]  J. Jester Corneal crystallins and the development of cellular transparency. , 2008, Seminars in cell & developmental biology.

[12]  S. Dravida,et al.  Recombinant human collagen for tissue engineered corneal substitutes. , 2008, Biomaterials.

[13]  J. Harris,et al.  Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling. , 2007, Micron.

[14]  Philip Lewis,et al.  Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase , 2006, Proceedings of the National Academy of Sciences.

[15]  Victor H Barocas,et al.  Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. , 2006, Tissue engineering.

[16]  Daniel J. Muller,et al.  Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. , 2006, Journal of structural biology.

[17]  K. Merrett,et al.  Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. , 2006, Biomacromolecules.

[18]  Rejean Munger,et al.  A simple, cross-linked collagen tissue substitute for corneal implantation. , 2006, Investigative ophthalmology & visual science.

[19]  J. Barbenel,et al.  Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines , 2006, Medical and Biological Engineering and Computing.

[20]  Wei Lui,et al.  Tissue engineering of nearly transparent corneal stroma. , 2005, Tissue engineering.

[21]  R. Young,et al.  Scleral structure, organisation and disease. A review. , 2004, Experimental eye research.

[22]  E. Orwin,et al.  Biomechanical and optical characteristics of a corneal stromal equivalent. , 2003, Journal of biomechanical engineering.

[23]  E. Suuronen,et al.  Artificial Human Corneas: Scaffolds for Transplantation and Host Regeneration , 2002, Cornea.

[24]  J. Paul Robinson,et al.  Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. , 2002, Journal of biomechanical engineering.

[25]  Y Zeng,et al.  A comparison of biomechanical properties between human and porcine cornea. , 2001, Journal of biomechanics.

[26]  G. Vrensen,et al.  The specific architecture of the anterior stroma accounts for maintenance of corneal curvature , 2001, The British journal of ophthalmology.

[27]  I. Papantoniou,et al.  Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. , 2001, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[28]  F H Silver,et al.  Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[29]  K. Kadler,et al.  Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. , 2000, Journal of molecular biology.

[30]  A. I. Schneider,et al.  Constructing an in vitro cornea from cultures of the three specific corneal cell types , 1999, In Vitro Cellular & Developmental Biology - Animal.

[31]  R. Guignard,et al.  Reconstructed Human Cornea Produced in vitro by Tissue Engineering , 1999, Pathobiology.

[32]  T. Møller-Pedersen,et al.  The cellular basis of corneal transparency: evidence for 'corneal crystallins'. , 1999, Journal of cell science.

[33]  Yoshimitsu Kuroyanagi,et al.  Design of artificial skin , 1996 .

[34]  C. S. Chen,et al.  Pore strain behaviour of collagen-glycosaminoglycan analogues of extracellular matrix. , 1995, Biomaterials.

[35]  A. Quantock,et al.  Scheie's syndrome: the architecture of corneal collagen and distribution of corneal proteoglycans. , 1993, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[36]  K. Meek,et al.  Ultrastructure of the corneal stroma: a comparative study. , 1993, Biophysical journal.

[37]  T. Ushiki,et al.  The three-dimensional organization of collagen fibrils in the human cornea and sclera. , 1991, Investigative ophthalmology & visual science.

[38]  N. Isshiki,et al.  Influence of glycosaminoglycans on the collagen sponge component of a bilayer artificial skin. , 1990, Biomaterials.

[39]  K. Doane,et al.  Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. , 1990, Journal of cell science.

[40]  D A Parry,et al.  The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. , 1988, Biophysical chemistry.

[41]  I. Yannas,et al.  Design of an artificial skin. I. Basic design principles. , 1980, Journal of biomedical materials research.

[42]  K. Piez,et al.  Collagen fibril formation in vitro. The role of the nonhelical terminal regions. , 1979, The Journal of biological chemistry.

[43]  R. Trelstad,et al.  Collagen fibrillogenesis: intermediate aggregates and suprafibrillar order. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Worthen,et al.  Histology of the Human Eye. , 1972 .

[45]  G. Benedek,et al.  Theory of transparency of the eye. , 1971, Applied optics.

[46]  S. Leibovich,et al.  Electron microscope studies of the effects of endo- and exopeptidase digestion on tropocollagen. A novel concept of the role of terminal regions in fibrillogenesis. , 1970, Biochimica et biophysica acta.

[47]  R. Hart,et al.  Light scattering in the cornea. , 1969, Journal of the Optical Society of America.

[48]  J. A. Chapman,et al.  Polymorphism in Collagen Fibrils precipitated at Low pH , 1968, Nature.

[49]  D. Maurice The structure and transparency of the cornea , 1957, The Journal of physiology.