Young measure solutions for a nonlinear parabolic equation of forward-backward type

The scope is to study the nonlinear parabolic evolution of forward-backward type \[u_t = \nabla \cdot q(\nabla u)\quad {\text{on }}Q_\infty \equiv \Omega \times \mathbb{R}^ + \] with initial data $u_0 $ given in $H_0^1 (\Omega )$, where $\Omega \subset \mathbb{R}^N $ is open, bounded, and $q \in C(\mathbb{R}^N ;\mathbb{R}^N )$, an analogue to heat flux, satisfies $q = \nabla \phi $ with $\phi \in C^1 (\mathbb{R}^N )$ of suitable growth. When $\phi $ is not convex classical solutions do not exist in general; the problem admits Young measure solutions. By that is meant a function u in a suitable Sobolev space and a gradient-generated family of probability measures $\nu = (\nu _{x,t} )_{(x,t) \in Q_\infty } $ related by $\nabla u = \langle {\nu ,id} \rangle $ almost everywhere (a.e.) (the identity integrated against $\nu $) and such that the equation can be interpreted distributionally in $H^{ - 1} :\int_0^{ + \infty } {\int_\Omega {\langle {\nu ,q} \rangle } } \cdot \nabla \zeta + u_t \zeta dxdt$ for all $\...

[1]  Pablo Pedregal,et al.  Weak convergence of integrands and the young measure representation , 1992 .

[2]  Nicola Fusco,et al.  Semicontinuity problems in the calculus of variations , 1984 .

[3]  G. Bliss Lectures on the calculus of variations , 1946 .

[4]  K. Höllig,et al.  A Diffusion Equation with a Nonmonotone Constitutive Function , 1983 .

[5]  Xiaodong Zhou An evolution problem for plastic antiplanar shear , 1992 .

[6]  Paolo Marcellini,et al.  Semicontinuity problems in the calculus of variations , 1980 .

[7]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[8]  J. Coron,et al.  Heat Flows and Relaxed Energies for Harmonic Maps , 1992 .

[9]  F. Murat,et al.  Compacité par compensation , 1978 .

[10]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[11]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[12]  K. Höllig Existence of infinitely many solutions for a forward backward heat equation , 1983 .

[13]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[14]  Pablo Pedregal,et al.  Gradient Young measures generated by sequences in Sobolev spaces , 1994 .

[15]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[16]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[17]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[18]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[19]  M. Slemrod Dynamics of measured valued solutions to a backward-forward heat equation , 1991 .