Potentiometric Nanostructured Sensors

The use of nanostructured materials has promoted a new impulse in the chemical sensors area. Electrochemical sensors have taken advantage of the new properties associated with the nanometer-sized objects, and these properties have greatly influenced the performance and operational parameters of the sensing devices. This article provides an overview of the advantages and limitations of different nanomaterials used for the development of the potentiometric sensors. Different dimensional structures, from nanoparticles to graphene, have been used as elements in the recognition layer or the transducers of field-effect transistors and potentiometric electrodes. Moreover, the introduction of nanomaterials has enabled the development of new miniaturized sensors that display good performance, rapid responses, and reduced cost and are easy to use. These sensors can be used in situ or incorporated in garments and other everyday life objects. That is, the era of wearable chemical sensors has started.

[1]  N. Yamamoto,et al.  Potentiometric investigations of antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified metal electrodes. , 1978, Journal of immunological methods.

[2]  G. Rechnitz,et al.  Potentiometric digoxin antibody measurements with antigen-ionophore based membrane electrodes. , 1984, Analytical chemistry.

[3]  I. Taniguchi,et al.  A potentiometric immunoglobulin G sensor based on a polypyrrole modified platinum electrode. , 1986 .

[4]  Chunliang Feng,et al.  Study on highly sensitive potentiometric IgG immunosensor , 2000 .

[5]  F. Diederich,et al.  Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes , 2000 .

[6]  T. Nussbaumer,et al.  Electrochemical carbon nanotube field-effect transistor , 2000, cond-mat/0009171.

[7]  Y. Chai,et al.  Potentiometric immunosensor based on antiserum of Japanese B encephalitis immobilized in nano-Au/polymerized o-phenylenediamine film , 2004 .

[8]  D. Diamond Internet-scale sensing. , 2004, Analytical chemistry.

[9]  Y. Chai,et al.  Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes , 2004 .

[10]  J. Bobacka Conducting Polymer‐Based Solid‐State Ion‐Selective Electrodes , 2006 .

[11]  Hong Jiang,et al.  Electroanalytical Determination of Carcinoembryonic Antigen at a Silica Nanoparticles/Titania Sol–Gel Composite Membrane‐Modified Gold Electrode , 2006 .

[12]  D. Diamond,et al.  Chemo/bio-sensor networks , 2006, Nature materials.

[13]  Jose L. Gonzalez-Guillaumin,et al.  Ingestible Capsule for Impedance and pH Monitoring in the Esophagus , 2007, IEEE Transactions on Biomedical Engineering.

[14]  Potassium-selective electrodes with stable and geometrically well-defined internal solid contact based on nanoparticles of polyaniline and plasticized poly(vinyl chloride). , 2007, Analytical chemistry.

[15]  A. Abbaspour,et al.  Carbon nanotube composite coated platinum electrode for detection of Cr(III) in real samples. , 2007, Talanta.

[16]  Y. Chai,et al.  On‐Off PVC Membrane Based Potentiometric Immunosensor for Label‐Free Detection of Alpha‐Fetoprotein , 2007 .

[17]  A. Stein,et al.  Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. , 2007, Analytical chemistry.

[18]  Douglas R. Kauffman,et al.  Electronically monitoring biological interactions with carbon nanotube field-effect transistors. , 2008, Chemical Society reviews.

[19]  F. Rius,et al.  Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. , 2008, Analytical chemistry.

[20]  Jianping Li,et al.  A Renewable Potentiometric Immunosensor Based on Fe3O4 Nanoparticles Immobilized Anti-IgG , 2008 .

[21]  Yan Liu Electrochemical detection of prostate-specific antigen based on gold colloids/alumina derived sol-gel film , 2008 .

[22]  Yuyang Liu,et al.  Functionalization of cotton with carbon nanotubes , 2008 .

[23]  D. Diamond,et al.  Wireless sensor networks and chemo-/biosensing. , 2008, Chemical reviews.

[24]  M. Fouskaki,et al.  Fullerene-based electrochemical buffer layer for ion-selective electrodes. , 2008, The Analyst.

[25]  M. Dragoman,et al.  Writing simple RF electronic devices on paper with carbon nanotube ink , 2009, Nanotechnology.

[26]  Yu Qin,et al.  Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites , 2009 .

[27]  J. Riu,et al.  Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. , 2009, In Analysis.

[28]  D. Pribat,et al.  Carbon nanotubes based transistors as gas sensors: State of the art and critical review , 2009 .

[29]  A. Ivaska,et al.  Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes , 2009 .

[30]  F. Rius,et al.  Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. , 2009, Analytical chemistry.

[31]  Xiuling Wang,et al.  Nanogold hollow microsphere-based electrochemical immunosensor for the detection of ferritin in human serum , 2009 .

[32]  J. Riu,et al.  Electrochemical sensing based on carbon nanotubes , 2010 .

[33]  R. E. Gyurcsányi,et al.  Ionophore-gold nanoparticle conjugates for Ag(+)-selective sensors with nanomolar detection limit. , 2010, Chemical communications.

[34]  Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors. , 2010, Analytical chemistry.

[35]  Juan Tang,et al.  Simultaneous determination of five-type hepatitis virus antigens in 5 min using an integrated automatic electrochemical immunosensor array. , 2010, Biosensors & bioelectronics.

[36]  Yi Cui,et al.  Aqueous supercapacitors on conductive cotton , 2010 .

[37]  R. E. Gyurcsányi,et al.  Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements. , 2010, Analytical chemistry.

[38]  Yixian Wang,et al.  Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer , 2011 .

[39]  J. Riu,et al.  Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes , 2011, Analytical and bioanalytical chemistry.

[40]  A. Kuroda,et al.  Application of an enteric coat increases the resistance to gastric juices for swallowable biosensors , 2011 .

[41]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[42]  E. Jaworska,et al.  Lowering the resistivity of polyacrylate ion-selective membranes by platinum nanoparticles addition. , 2011, Analytical chemistry.

[43]  F. Rius,et al.  An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. , 2011, Chemical communications.

[44]  R. E. Gyurcsányi,et al.  Solid-state ion channels for potentiometric sensing. , 2011, Angewandte Chemie.

[45]  J. Riu,et al.  Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements. , 2011, Analytical chemistry.

[46]  E. Jaworska,et al.  Gold nanoparticles solid contact for ion-selective electrodes of highly stable potential readings. , 2011, Talanta.

[47]  Young Hee Lee,et al.  Graphene Versus Carbon Nanotubes in Electronic Devices , 2011 .

[48]  N. Chaniotakis,et al.  Carbon-nanofiber-based nanocomposite membrane as a highly stable solid-state junction for reference electrodes. , 2011, Analytical chemistry.

[49]  J. Riu,et al.  Reduced Graphene Oxide Films as Solid Transducers in Potentiometric All-Solid-State Ion-Selective Electrodes , 2012 .

[50]  J. Bokor,et al.  Streptavidin as CNTs and DNA Linker for the Specific Electronic and Optical Detection of DNA Hybridization , 2012 .

[51]  Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors. , 2012, Journal of the American Chemical Society.

[52]  F. Patolsky,et al.  Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. , 2012, Nano letters.

[53]  Platinum nanoparticles intermediate layer in solid-state selective electrodes. , 2012, The Analyst.

[54]  F. Rius,et al.  Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination , 2012 .

[55]  F. Rius,et al.  Paper-based ion-selective potentiometric sensors. , 2012, Analytical chemistry.

[56]  J. Kevek,et al.  Origins of charge noise in carbon nanotube field-effect transistor biosensors. , 2012, Nano letters.

[57]  M. Wójcik,et al.  Dithizone modified gold nanoparticles films for potentiometric sensing. , 2012, Analytical chemistry.

[58]  J. Riu,et al.  Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. , 2012, Biosensors & bioelectronics.

[59]  A. Michalska All‐Solid‐State Ion Selective and All‐Solid‐State Reference Electrodes , 2012 .

[60]  M. Moloney,et al.  Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime. , 2012, Analytical chemistry.

[61]  Fenghua Li,et al.  All-solid-state potassium-selective electrode using graphene as the solid contact. , 2012, The Analyst.

[62]  Y. D. Kim,et al.  The role of external defects in chemical sensing of graphene field-effect transistors. , 2013, Nano letters.

[63]  N. Lee,et al.  Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. , 2013, Small.

[64]  Marta Novell,et al.  A novel miniaturized radiofrequency potentiometer tag using ion-selective electrodes for wireless ion sensing. , 2013, The Analyst.

[65]  F. Rius,et al.  Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. , 2013, The Analyst.

[66]  J. Riu,et al.  Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. , 2013, Biosensors & bioelectronics.

[67]  Jongho Lee,et al.  25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. , 2013, ACS Nano.

[68]  Z. Bao,et al.  A review of fabrication and applications of carbon nanotube film-based flexible electronics. , 2013, Nanoscale.

[69]  P. Bühlmann,et al.  Solid contact ion-selective electrodes with a well-controlled Co(II)/Co(III) redox buffer layer. , 2013, Analytical chemistry.

[70]  Mallory L. Hammock,et al.  Investigation of protein detection parameters using nanofunctionalized organic field-effect transistors. , 2013, ACS nano.

[71]  Oh Seok Kwon,et al.  Large‐Scale Graphene Micropattern Nano‐biohybrids: High‐Performance Transducers for FET‐Type Flexible Fluidic HIV Immunoassays , 2013, Advanced materials.

[72]  J. Windmiller,et al.  A potentiometric tattoo sensor for monitoring ammonium in sweat. , 2013, The Analyst.

[73]  F. Rius,et al.  A paper-based potentiometric cell for decentralized monitoring of Li levels in whole blood. , 2014, Lab on a chip.

[74]  M. Li,et al.  Ion-selective gold-thiol film on integrated screen-printed electrodes for analysis of Cu(II) ions. , 2014, The Analyst.

[75]  J. Windmiller,et al.  Bandage-Based Wearable Potentiometric Sensor for Monitoring Wound pH , 2014 .

[76]  G. Duesberg,et al.  Inkjet-defined field-effect transistors from chemical vapour deposited graphene , 2014 .

[77]  Joseph Wang,et al.  Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. , 2014, Biosensors & bioelectronics.

[78]  Y. Choa,et al.  Palladium/single-walled carbon nanotube back-to-back Schottky contact-based hydrogen sensors and their sensing mechanism. , 2014, ACS applied materials & interfaces.

[79]  F. Rius,et al.  A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. , 2014, Analytica chimica acta.