Ultrasensitive and Highly Selective Photodetections of UV-A Rays Based on Individual Bicrystalline GaN Nanowire.

The detection of UV-A rays (wavelength of 320-400 nm) using functional semiconductor nanostructures is of great importance in either fundamental research or technological applications. In this work, we report the catalytic synthesis of peculiar bicrystalline GaN nanowires and their utilization for building high-performance optoelectronic nanodevices. The as-prepared UV-A photodetector based on individual bicrystalline GaN nanowire demonstrates a fast photoresponse time (144 ms), a high wavelength selectivity (UV-A light response only), an ultrahigh photoresponsivity of 1.74 × 107 A/W and EQE of 6.08 × 109%, a sensitivity of 2 × 104%, and a very large on/off ratio of more than two orders, as well as robust photocurrent stability (photocurrent fluctuation of less than 7% among 4000 s), showing predominant advantages in comparison with other peer semiconductor photodetectors. The outstanding optoelectronic performance of the bicrystalline GaN nanowire UV-A photodetector is further analyzed based on a detailed high-resolution transmission electron microscope (HRTEM) study, and the two separated crystal domains within the GaN nanowires are believed to provide separated and rapid carrier transfer channels. This work paves a solid way toward the integration of high-performance optoelectronic nanodevices based on bicrystalline or horizontally aligned one-dimensional semiconductor nanostructures.

[1]  M. Eickhoff,et al.  UV Photosensing Characteristics of Nanowire-Based GaN/AlN Superlattices. , 2016, Nano letters.

[2]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[3]  Wenbo Jia,et al.  3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. , 2016, Nanoscale.

[4]  Chunxiang Xu,et al.  Single ZnO microrod ultraviolet photodetector with high photocurrent gain. , 2013, ACS applied materials & interfaces.

[5]  H. Xu,et al.  Room-temperature near-infrared photodetectors based on single heterojunction nanowires. , 2014, Nano letters.

[6]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[7]  Yitai Qian,et al.  High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors , 2009, Advanced materials.

[8]  Jiangwei Liu,et al.  Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS‐ZnO Heterostructure Nanofilms , 2014, Advanced materials.

[9]  Liang Li,et al.  CdS Nanoscale Photodetectors , 2014, Advanced materials.

[10]  Y. Bando,et al.  Bicrystalline ZnS microbelts , 2009 .

[11]  Zhong Lin Wang,et al.  Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects , 2013, Nano Research.

[12]  Dongxu Zhao,et al.  Solar-Blind Avalanche Photodetector Based On Single ZnO-Ga₂O₃ Core-Shell Microwire. , 2015, Nano letters.

[13]  S. T. Lee,et al.  Photoconductive characteristics of single-crystal CdS nanoribbons. , 2006, Nano letters.

[14]  Hyunsung Park,et al.  Vertically Stacked Photodetector Devices Containing Silicon Nanowires with Engineered Absorption Spectra , 2015 .

[15]  W. Han,et al.  Synthesis and optical properties of GaN/ZnO solid solution nanocrystals , 2010 .

[16]  Electrically driven light emission from individual CdSe nanowires. , 2008, Nano letters.

[17]  Dapeng Yu,et al.  Graphene/GaN diodes for ultraviolet and visible photodetectors , 2014 .

[18]  Nancy M. Haegel,et al.  Enhanced Near‐Bandgap Response in InP Nanopillar Solar Cells , 2014 .

[19]  Tianyou Zhai,et al.  Template Deformation‐Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Control and Optimization of Field‐Emission , 2009 .

[20]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[21]  J. Myoung,et al.  Dielectrophoretic assembly of GaN nanowires for UV sensor applications , 2008 .

[22]  T. Sekiguchi,et al.  Solubility and crystallographic facet tailoring of (GaN)(1-x)(ZnO)(x) pseudobinary solid-solution nanostructures as promising photocatalysts. , 2016, Nanoscale.

[23]  Meiyong Liao,et al.  New Ultraviolet Photodetector Based on Individual Nb2O5 Nanobelts , 2011 .

[24]  Jinyou Xu,et al.  Semiconductor Alloy Nanoribbon Lateral Heterostructures for High‐Performance Photodetectors , 2014, Advanced materials.

[25]  Hong Jiang,et al.  Realization of a High‐Performance GaN UV Detector by Nanoplasmonic Enhancement , 2012, Advanced materials.

[26]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2009, Nature.

[27]  D. Shen,et al.  A highly efficient UV photodetector based on a ZnO microwire p–n homojunction , 2014 .

[28]  B. Yao,et al.  Ultraviolet photodetector based on heterojunction of n-ZnO microwire/p-GaN film , 2015 .

[29]  Kuei-Hsien Chen,et al.  Ultrahigh photocurrent gain in m-axial GaN nanowires , 2007 .

[30]  Zhiyong Fan,et al.  All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity , 2014, Nature Communications.

[31]  Charles M. Lieber,et al.  Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions , 2013, Nature nanotechnology.

[32]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[33]  Richard D. Schaller,et al.  Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires , 2002 .

[34]  G. Shen,et al.  High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays , 2014 .

[35]  Zheng Lou,et al.  Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with Ultrahigh Sensitivity. , 2015, ACS applied materials & interfaces.

[36]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[37]  Meiyong Liao,et al.  Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. , 2011, Small.

[38]  Liang Li,et al.  A Self‐Powered and Stable All‐Perovskite Photodetector–Solar Cell Nanosystem , 2016 .

[39]  T. Sekiguchi,et al.  Origin of yellow-band emission in epitaxially grown GaN nanowire arrays. , 2014, ACS applied materials & interfaces.

[40]  Zongpeng Wang,et al.  Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation. , 2016, ACS applied materials & interfaces.

[41]  Y. Bando,et al.  High-performance Schottky solar cells using ZrS2 nanobelt networks , 2011 .

[42]  S. S. Wang,et al.  A High-Responsivity GaN Nanowire UV Photodetector , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[43]  Andreas Offenhäusser,et al.  Toward Intraoperative Detection of Disseminated Tumor Cells in Lymph Nodes with Silicon Nanowire Field Effect Transistors. , 2016, ACS nano.

[44]  Chao Liu,et al.  Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire. , 2014, Nanoscale.

[45]  D. Shen,et al.  Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles. , 2013, Nanoscale.

[46]  Yoshio Bando,et al.  Needlelike bicrystalline GaN nanowires with excellent field emission properties. , 2005, Journal of Physical Chemistry B.

[47]  Y. Bando,et al.  Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors , 2015, Advanced materials.

[48]  Y. Bando,et al.  Electrical Transport and High‐Performance Photoconductivity in Individual ZrS2 Nanobelts , 2010, Advanced materials.

[49]  Tianyou Zhai,et al.  Ultrahigh‐Performance Solar‐Blind Photodetectors Based on Individual Single‐crystalline In2Ge2O7 Nanobelts , 2010, Advanced materials.

[50]  Z. Mi,et al.  Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes. , 2015, Nano letters.

[51]  Baodan Liu,et al.  Zn-dopant dependent defect evolution in GaN nanowires. , 2015, Nanoscale.

[52]  Michael R. S. Huang,et al.  Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction , 2014 .

[53]  Yue Zhang,et al.  High—Performance Solar‐Blind Deep Ultraviolet Photodetector Based on Individual Single‐Crystalline Zn2GeO4 Nanowire , 2016 .

[54]  Chunhai Jiang,et al.  Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures. , 2015, Nano letters.

[55]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[56]  R. Ma,et al.  New UV‐A Photodetector Based on Individual Potassium Niobate Nanowires with High Performance , 2014 .

[57]  S. B. Krupanidhi,et al.  Enhanced UV detection by non-polar epitaxial GaN films , 2015 .

[58]  Guozhen Shen,et al.  High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires , 2015, Nano Research.