Fluctuating force-coupling method for simulations of colloidal suspensions

Abstract The resolution of Brownian motion in simulations of micro-particle suspensions can be crucial to reproducing the correct dynamics of individual particles, as well as providing an accurate characterisation of suspension properties. Including these effects in simulations, however, can be computationally intensive due to the configuration dependent random displacements that would need to be determined at every time step. In this paper, we introduce the fluctuating force-coupling method (FCM) to overcome this difficulty, providing a fast approach to simulate colloidal suspensions at large-scale. We show explicitly that by forcing the surrounding fluid with a fluctuating stress and employing the FCM framework to obtain the motion of the particles, one obtains the random particle velocities and angular velocities that satisfy the fluctuation–dissipation theorem. This result holds even when higher-order multipoles, such as stresslets, are included in the FCM approximation. Through several numerical experiments, we confirm our analytical results and demonstrate the effectiveness of fluctuating FCM, showing also how Brownian drift can be resolved by employing the appropriate time integration scheme and conjugate gradient method.

[1]  Paul J. Atzberger,et al.  A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales , 2007, J. Comput. Phys..

[2]  John F. Brady,et al.  Accelerated Stokesian dynamics: Brownian motion , 2003 .

[3]  G. Batchelor,et al.  Brownian diffusion of particles with hydrodynamic interaction , 1976, Journal of Fluid Mechanics.

[4]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[5]  L. Fauci,et al.  The method of regularized Stokeslets in three dimensions : Analysis, validation, and application to helical swimming , 2005 .

[6]  M. Fixman,et al.  Simulation of polymer dynamics. I. General theory , 1978 .

[7]  Juan J de Pablo,et al.  Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry. , 2007, Physical review letters.

[8]  M. Maxey,et al.  Localized force representations for particles sedimenting in Stokes flow , 2001 .

[9]  Klaus Zahn,et al.  Hydrodynamic Interactions May Enhance the Self-Diffusion of Colloidal Particles , 1997 .

[10]  C. Pozrikidis,et al.  Boundary Integral and Singularity Methods for Linearized Viscous Flow: The boundary integral equations , 1992 .

[11]  Martin R. Maxey,et al.  Dynamics of concentrated suspensions of non-colloidal particles in Couette flow , 2010, Journal of Fluid Mechanics.

[12]  Boyce E. Griffith,et al.  Inertial coupling method for particles in an incompressible fluctuating fluid , 2012, 1212.6427.

[13]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[14]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[15]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Yanyan Cao,et al.  Catalytic nanomotors: autonomous movement of striped nanorods. , 2004, Journal of the American Chemical Society.

[18]  G. Uhlenbeck,et al.  Contributions to Non‐Equilibrium Thermodynamics. I. Theory of Hydrodynamical Fluctuations , 1970 .

[19]  Michael J Shelley,et al.  Stretch-coil transition and transport of fibers in cellular flows. , 2007, Physical review letters.

[20]  Ladd Short-time motion of colloidal particles: Numerical simulation via a fluctuating lattice-Boltzmann equation. , 1993, Physical review letters.

[21]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[22]  S N Yaliraki,et al.  Crowding-induced anisotropic transport modulates reaction kinetics in nanoscale porous media. , 2010, The journal of physical chemistry. B.

[23]  Sarah L. Dance,et al.  Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow , 2003 .

[24]  Ricardo Cortez,et al.  The Method of Regularized Stokeslets , 2001, SIAM J. Sci. Comput..

[25]  Martin R. Maxey,et al.  Gravitational Settling of Aerosol Particles in Randomly Oriented Cellular Flow Fields , 1986 .

[26]  Bernd Rinn,et al.  Influence of hydrodynamic interactions on the dynamics of long-range interacting colloidal particles , 1999 .

[27]  Martin R. Maxey,et al.  The motion of small spherical particles in a cellular flow field , 1987 .

[28]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[29]  A. Acrivos,et al.  Slow flow through a periodic array of spheres , 1982 .

[30]  Roman Stocker,et al.  Gyrotaxis in a steady vortical flow. , 2011, Physical review letters.

[31]  M. Maxey,et al.  Force-coupling method for particulate two-phase flow: stokes flow , 2003 .

[32]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[33]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[34]  Paul Grassia,et al.  Computer simulations of Brownian motion of complex systems , 1995, Journal of Fluid Mechanics.

[35]  Paul J. Atzberger,et al.  Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations , 2009, J. Comput. Phys..

[36]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[37]  George Em Karniadakis,et al.  Dynamics of self-assembled chaining in magnetorheological fluids. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[38]  G. Karniadakis,et al.  Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi , 2006, Proceedings of the National Academy of Sciences.

[39]  W. Russel,et al.  Brownian Motion of Small Particles Suspended in Liquids , 1981 .

[40]  Hartmut Löwen,et al.  Long-time self-diffusion coefficient in colloidal suspensions: theory versus simulation , 1993 .

[41]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[42]  Andreas Walther,et al.  Janus particles. , 2008, Soft matter.

[43]  J. Brady,et al.  Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation , 2000, Journal of Fluid Mechanics.

[44]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[45]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.

[46]  See-Eng Phan,et al.  Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Anthony J. C. Ladd,et al.  Hydrodynamic transport coefficients of random dispersions of hard spheres , 1990 .

[50]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[51]  David J. Pine,et al.  Living Crystals of Light-Activated Colloidal Surfers , 2013, Science.

[52]  George Em Karniadakis,et al.  Numerical simulation of turbulent drag reduction using micro-bubbles , 2002, Journal of Fluid Mechanics.

[53]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[54]  Martin R. Maxey,et al.  Simulation of concentrated suspensions using the force-coupling method , 2010, J. Comput. Phys..

[55]  Sharon C. Glotzer,et al.  Self‐assembly: From nanoscale to microscale colloids , 2004 .

[56]  Eric F Darve,et al.  A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers , 2005 .

[57]  N. Patankar,et al.  Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations , 2004 .

[58]  M. Fixman Construction of Langevin forces in the simulation of hydrodynamic interaction , 1986 .

[59]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[60]  Juan J. de Pablo,et al.  Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations , 2000 .