Wetting and Dewetting of Complex Surface Geometries

Surfaces exhibiting complex topographies, such as those encountered in biology, give rise to an enormously rich variety of interfacial morphologies of a liquid to which they are exposed. In the present article, we elaborate on some basic mechanisms involved in the statics and dynamics of such morphologies, focusing on a few simple paradigm topographies. We demonstrate that different liquid interface morphologies on the same sample frequently coexist. To exemplify the impact of the dynamics on the final droplet morphology, we discuss the shape instability of filamentous liquid structures in wedge geometries. We finally show that some side effects that may dominate on a larger scale, such as contact line pinning and contact angle hysteresis, seem to play a minor role on the microscopic scale under study. This establishes the validity of simple theoretical concepts of wetting as a starting point for describing liquids at substrate surfaces of high complexity.

[1]  David Quéré,et al.  Non-sticking drops , 2005 .

[2]  Xi-Qiao Feng,et al.  Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[3]  S. Herminghaus,et al.  Dewetting of liquid filaments in wedge-shaped grooves. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[4]  Ralf Blossey,et al.  Complex dewetting scenarios captured by thin-film models , 2003, Nature materials.

[5]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[6]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[7]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[8]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[9]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[10]  G de With,et al.  Superhydrophobic films from raspberry-like particles. , 2005, Nano letters.

[11]  Kenneth A. Brakke,et al.  The Surface Evolver and the stability of liquid surfaces , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  P. Concus,et al.  Correction for Concus and Finn, On the behavior of a capillary surface in a wedge , 1969, Proceedings of the National Academy of Sciences.

[13]  Lei Jiang,et al.  Bioinspired surfaces with special wettability. , 2005, Accounts of chemical research.

[14]  Frederick F. Lange,et al.  Patterning of polymers: precise channel stamping by optimizing wetting properties , 2004 .

[15]  J. Mann,et al.  Solder wetting kinetics in narrow V-grooves , 1997 .

[16]  D. Beysens,et al.  Growth dynamics of water drops on a square-pattern rough hydrophobic surface. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[17]  Marie N. Amistoso,et al.  Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process , 2001 .

[18]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[19]  Jürgen Rühe,et al.  Advancing and receding motion of droplets on ultrahydrophobic post surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[20]  Vesselin N. Paunov,et al.  Direct measurement of lateral capillary forces , 1993 .

[21]  M. J. Kim,et al.  Trapezoidal structure for residue-free filling and patterning , 2007 .

[22]  Stephan Herminghaus,et al.  Electroactuation of fluid using topographical wetting transitions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[23]  C. Stafford,et al.  Anisotropic wetting on tunable micro-wrinkled surfaces. , 2007, Soft matter.

[24]  B. Ocko,et al.  High resolution non-contact AFM imaging of liquids condensed onto chemically nanopatterned surfaces. , 2006, Ultramicroscopy.

[25]  R. Blossey,et al.  Blobs, channels and “cigars”: Morphologies of liquids at a step , 2004, The European physical journal. E, Soft matter.

[26]  H. Dobbs The elasticity of a contact line , 1999 .

[27]  Reinhard Lipowsky,et al.  Wetting morphologies at microstructured surfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Herminghaus,et al.  Surface hydrophobicity causes SO2 tolerance in lichens. , 2008, Annals of botany.

[29]  J. Mann,et al.  The Flow of Liquids in Surface Grooves , 1996 .

[30]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[31]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[32]  Jan Haisma,et al.  Mold‐assisted nanolithography: A process for reliable pattern replication , 1996 .

[33]  J. Mann,et al.  Wetting kinetics in surface capillary grooves , 1996 .

[34]  R. Lipowsky,et al.  Contact Angles on Heterogeneous Surfaces: A New Look at Cassie's and Wenzel's Laws , 1998, cond-mat/9809089.

[35]  Stephan Herminghaus,et al.  Imaging of droplets of aqueous solutions by tapping-mode scanning force microscopy , 1997 .

[36]  Tomohiro Onda,et al.  Super-Water-Repellent Fractal Surfaces , 1995 .

[37]  H. Kurz,et al.  Fabrication of nanostructures using a UV-based imprint technique , 2000 .

[38]  L. Rayleigh On The Instability Of Jets , 1878 .

[39]  J. Rühe,et al.  Contact line shape on ultrahydrophobic post surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[40]  Mann,et al.  Flow of simple liquids down narrow ssV grooves. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  R. Shuttleworth,et al.  The spreading of a liquid over a rough solid , 1948 .

[42]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[43]  Reinhard Lipowsky,et al.  Wetting and dewetting of structured and imprinted surfaces , 2000 .

[44]  G. Mistura,et al.  Complete wetting on a linear wedge. , 2002, Physical review letters.

[45]  Uwe Thiele,et al.  Wetting of textured surfaces , 2002 .

[46]  A. Parry,et al.  Geometry Dominated Fluid Adsorption on Sculptured Substrates , 2000 .

[47]  S. Chou,et al.  Ultrafast and direct imprint of nanostructures in silicon , 2002, Nature.

[48]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[49]  S. Herminghaus,et al.  Switching liquid morphologies on linear grooves. , 2007, Langmuir.

[50]  George M. Whitesides,et al.  New Approaches to Nanofabrication: Molding, Printing, and Other Techniques , 2005 .

[51]  David Quéré,et al.  Superhydrophobic states , 2003, Nature materials.

[52]  Geometry-dominated fluid adsorption on sculpted solid substrates , 2000, Nature.

[53]  Stephan Herminghaus,et al.  How plants keep dry: a physicist's point of view. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[54]  H. Kurz,et al.  Characterization and application of a UV-based imprint technique , 2001 .

[55]  M. Madou Fundamentals of microfabrication , 1997 .

[56]  Walter Bacher,et al.  Hot embossing - The molding technique for plastic microstructures , 1998 .

[57]  Stephan Herminghaus,et al.  Roughness-induced non-wetting , 2000 .

[58]  Bischof,et al.  Spinodal dewetting in liquid crystal and liquid metal films , 1998, Science.

[59]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[60]  Robert N. Wenzel,et al.  Surface Roughness and Contact Angle. , 1949 .

[61]  Jürgen Rühe,et al.  Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[62]  A. Cao,et al.  Fabrication of nonaging superhydrophobic surfaces by packing flowerlike hematite particles , 2007 .

[63]  P. Gennes Wetting: statics and dynamics , 1985 .

[64]  G. McHale,et al.  A lichen protected by a super-hydrophobic and breathable structure. , 2006, Journal of plant physiology.

[65]  T. Ondarçuhu,et al.  Pinning of a contact line on nanometric steps during the dewetting of a terraced substrate. , 2005, Nano letters.