Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries

Niobium-doped nanofibers elaborated by facile, single-step electrospinning present a higher rate capability in electrochemical cycling experiments than nondoped materials. This is attributed to the reduction of Li+ diffusion path lengths and enhanced intimate interparticle contact, in combination with improved intraparticle conductivity. Niobium doping has a significant effect on the electronic structure and provokes a substantial decrease in particle size.

[1]  H. Ahn,et al.  Fabrication of wrinkled Nb-doped TiO2 nanofibres via electrospinning , 2013 .

[2]  N. A. Kyeremateng,et al.  Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries , 2013 .

[3]  Ju-Young Park,et al.  Influence of Fe doping on phase transformation and crystallite growth of electrospun TiO2 nanofibers for photocatalytic reaction , 2012 .

[4]  T. Dittrich,et al.  The Impact of Niobium Surface Segregation on Charge Separation in Niobium-Doped Titanium Dioxide , 2012 .

[5]  Deborah J. Jones,et al.  Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells , 2012 .

[6]  Zongping Shao,et al.  From Paper to Paper-like Hierarchical Anatase TiO2 Film Electrode for High-Performance Lithium-Ion Batteries , 2012 .

[7]  D. Kang,et al.  Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries , 2012 .

[8]  X. Zhang,et al.  Electrospun TiO2–Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries , 2012 .

[9]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[10]  C. Feng,et al.  Synthesis and electrochemical properties of TiO2/C nano-fiber composite , 2012 .

[11]  Zaiping Guo,et al.  Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance , 2012 .

[12]  Yunhui Huang,et al.  Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries , 2012 .

[13]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[14]  A. S. Nair,et al.  Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries , 2012 .

[15]  Yong Jiang,et al.  Preparation of graphene/TiO2 anode materials for lithium-ion batteries by a novel precipitation method , 2011 .

[16]  Deborah J. Jones,et al.  Electrospinning: designed architectures for energy conversion and storage devices , 2011 .

[17]  L. Österlund,et al.  Influence of phonon confinement, surface stress, and zirconium doping on the Raman vibrational properties of anatase TiO2 nanoparticles , 2011 .

[18]  Peifang Wang,et al.  Preparation and enhanced photocatalytic performance of Sn ion modified titania hollow spheres , 2011 .

[19]  L. Nazar,et al.  Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries , 2011 .

[20]  A. S. Nair,et al.  Synthesis and characterization of rice grains like Nitrogen-doped TiO2 nanostructures by electrospinning-photocatalysis , 2011 .

[21]  Xiaoping Yang,et al.  Nanosized anatase titanium dioxide loaded porous carbon nanofiber webs as anode materials for lithium-ion batteries , 2011 .

[22]  A. Fujishima,et al.  Photochromism-based detection of volatile organic compounds by W-doped TiO2 nanofibers. , 2011, Journal of colloid and interface science.

[23]  Zongping Shao,et al.  Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers† , 2011 .

[24]  Deborah J. Jones,et al.  Single step elaboration of size-tuned Pt loaded titania nanofibres. , 2011, Chemical communications.

[25]  Younan Xia,et al.  Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology , 2011 .

[26]  W. Daoud,et al.  Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping , 2011 .

[27]  Yu‐Guo Guo,et al.  Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. , 2011, Physical chemistry chemical physics : PCCP.

[28]  M. Gnanavel,et al.  Anamolously High Lithium Storage in Mesoporous Nanoparticulate Aggregation of Fe3+ Doped Anatase Titania , 2011 .

[29]  S. Ramakrishna,et al.  Structural and Electrical Properties of Nb‐Doped Anatase TiO2 Nanowires by Electrospinning , 2010 .

[30]  B. Smarsly,et al.  Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion , 2010 .

[31]  Rita Baddour-Hadjean,et al.  Raman microspectrometry applied to the study of electrode materials for lithium batteries. , 2010, Chemical reviews.

[32]  Sven Barth,et al.  Synthesis and applications of one-dimensional semiconductors , 2010 .

[33]  W. Kim,et al.  Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries , 2010 .

[34]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[35]  S. Kerisit,et al.  Dynamics of Coupled Lithium/Electron Diffusion in TiO2 Polymorphs , 2009 .

[36]  M. Hirano,et al.  Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization , 2009 .

[37]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[38]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[39]  P. Lippens,et al.  EXAFS study of dopant ions with different charges in nanocrystalline anatase: evidence for space-charge segregation of acceptor ions. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[41]  H. Kumigashira,et al.  Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2 , 2008 .

[42]  R. Dedryvère,et al.  Ni3Sn4 Electrodes for Li-Ion Batteries: Li−Sn Alloying Process and Electrode/Electrolyte Interface Phenomena , 2008 .

[43]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[44]  P. Lippens,et al.  Structure and Chemical Bonding in Zr-Doped Anatase TiO2 Nanocrystals , 2008 .

[45]  Darrell H. Reneker,et al.  Electrospinning of Nanofibers from Polymer Solutions and Melts , 2007 .

[46]  J. Nowotny,et al.  Electrical properties of niobium-doped titanium dioxide. 2. Equilibration kinetics. , 2006, The journal of physical chemistry. B.

[47]  P. Lippens,et al.  Local atomic and electronic structure in nanocrystalline Sn-doped anatase TiO2. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  J. Nowotny,et al.  Electrical properties of niobium-doped titanium dioxide. 1. Defect disorder. , 2006, The journal of physical chemistry. B.

[49]  Pelagia-Irene Gouma,et al.  Electrospun composite nanofibers for functional applications , 2006 .

[50]  Taro Hitosugi,et al.  A transparent metal: Nb-doped anatase TiO2 , 2005 .

[51]  P. Lippens,et al.  Electronic Structure of the Spinel Li4Ti5O12 Studied by ab initio Calculations and X‐Ray Absorption Spectroscopy. , 2004 .

[52]  A. Cornet,et al.  Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles , 2004 .

[53]  P. Knauth,et al.  EXAFS study of dopant segregation (Zn, Nb) in nanocrystalline anatase (TiO2) , 2003 .

[54]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[55]  Vincenzo Guidi,et al.  Effect of Dopants on Grain Coalescence and Oxygen Mobility in Nanostructured Titania Anatase and Rutile , 2003 .

[56]  H. Renevier,et al.  ELECTRON POPULATION ANALYSIS BY FULL-POTENTIAL X-RAY ABSORPTION SIMULATIONS , 1999 .

[57]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  M. Kuznetsov,et al.  XPS study of the nitrides, oxides and oxynitrides of titanium , 1992 .

[60]  K. Sing,et al.  Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional) , 1982 .

[61]  M. K. Bahl,et al.  ESCA studies of some niobium compounds , 1974 .