CD8+ T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome

[1]  S. Srivastava,et al.  Guidelines for treatment of Susac syndrome – An update , 2020, International journal of stroke : official journal of the International Stroke Society.

[2]  R. Rennebohm,et al.  Neuropathological Findings in Susac Syndrome: An Autopsy Report. , 2019, Journal of neuropathology and experimental neurology.

[3]  S. Quake,et al.  Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1 , 2019, Nature Medicine.

[4]  P. Steyger,et al.  Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier , 2019, Science Translational Medicine.

[5]  H. Wiendl,et al.  Dual action by fumaric acid esters synergistically reduces adhesion to human endothelium , 2018, Multiple sclerosis.

[6]  G. Holmes,et al.  Humanized mouse model of Rasmussen’s encephalitis supports the immune-mediated hypothesis , 2018, The Journal of clinical investigation.

[7]  G. Nolan,et al.  Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models , 2018, Nature Neuroscience.

[8]  H. Rammensee,et al.  Unveiling the Peptide Motifs of HLA-C and HLA-G from Naturally Presented Peptides and Generation of Binding Prediction Matrices , 2017, The Journal of Immunology.

[9]  William S. DeWitt,et al.  Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire , 2017, Nature Genetics.

[10]  B. Engelhardt,et al.  The movers and shapers in immune privilege of the CNS , 2017, Nature Immunology.

[11]  C. Janse,et al.  CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature , 2016, PLoS pathogens.

[12]  K. Jellinger,et al.  Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis , 2016, Acta Neuropathologica.

[13]  F. Paul,et al.  Diagnostic criteria for Susac syndrome , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[14]  H. Wiendl,et al.  B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity , 2016, Proceedings of the National Academy of Sciences.

[15]  Jing Ma,et al.  Preferential Use of Public TCR during Autoimmune Encephalomyelitis , 2016, The Journal of Immunology.

[16]  R. Hohlfeld,et al.  Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation , 2016, Proceedings of the National Academy of Sciences.

[17]  G. Widman,et al.  CD8+ T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing , 2016, Nature Communications.

[18]  Jasmin Herz,et al.  Parasite pathogenesis: Breaching the wall for brain access , 2016, Nature Microbiology.

[19]  Zhen Zhao,et al.  Establishment and Dysfunction of the Blood-Brain Barrier , 2015, Cell.

[20]  B. Engelhardt,et al.  Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1‐integrin , 2015, European journal of immunology.

[21]  M. Snuderl,et al.  Incomplete Susac syndrome exacerbated after natalizumab , 2015, Neurology: Neuroimmunology & Neuroinflammation.

[22]  D. Corey,et al.  Gene Expression by Mouse Inner Ear Hair Cells during Development , 2015, The Journal of Neuroscience.

[23]  C. Larochelle,et al.  Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions , 2015, Neurobiology of Disease.

[24]  M. Nielsen,et al.  Uncovering the Peptide-Binding Specificities of HLA-C: A General Strategy To Determine the Specificity of Any MHC Class I Molecule , 2014, The Journal of Immunology.

[25]  Frode Vartdal,et al.  High‐throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV‐reactive CD8+ T cells , 2014, European journal of immunology.

[26]  N. Friedman,et al.  T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity , 2014, Genome research.

[27]  P. Silberstein,et al.  Brain histopathology in three cases of Susac's syndrome: implications for lesion pathogenesis and treatment , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[28]  H. Wiendl,et al.  VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells , 2014, Journal of Neuroimmunology.

[29]  E. Ringelstein,et al.  Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study , 2014, Journal of Neuroinflammation.

[30]  E. Ringelstein,et al.  Susac Syndrome Treated with Subcutaneous Immunoglobulin , 2013, European Neurology.

[31]  F. Sallusto,et al.  The who's who of T‐cell differentiation: Human memory T‐cell subsets , 2013, European journal of immunology.

[32]  F. Zipp,et al.  Kinetics of IL-6 Production Defines T Effector Cell Responsiveness to Regulatory T Cells in Multiple Sclerosis , 2013, PloS one.

[33]  S. Akanuma,et al.  Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier , 2013, Fluids and Barriers of the CNS.

[34]  H. Wiendl,et al.  Rasmussen encephalitis treated with natalizumab , 2013, Neurology.

[35]  E. Ringelstein,et al.  Characteristics of Susac syndrome: a review of all reported cases , 2013, Nature Reviews Neurology.

[36]  F. Ginhoux,et al.  Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria , 2013, EMBO molecular medicine.

[37]  W. Al-Herz,et al.  Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. , 2013, Blood.

[38]  Chester Ni,et al.  In Active Relapsing-Remitting Multiple Sclerosis, Effector T Cell Resistance to Adaptive Tregs Involves IL-6–Mediated Signaling , 2013, Science Translational Medicine.

[39]  M. Kurrer,et al.  Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice , 2012, The Journal of experimental medicine.

[40]  Andrew K. Sewell,et al.  Why must T cells be cross-reactive? , 2012, Nature Reviews Immunology.

[41]  C. Desmarais,et al.  Ultra-sensitive detection of rare T cell clones. , 2012, Journal of immunological methods.

[42]  Jiahuai Han,et al.  Determinants of public T cell responses , 2012, Cell Research.

[43]  Ming-Fei Lang,et al.  TAK1 in brain endothelial cells mediates fever and lethargy , 2011, The Journal of experimental medicine.

[44]  Ming-Fei Lang,et al.  A Transgenic Approach to Identify Thyroxine Transporter‐Expressing Structures in Brain Development , 2011, Journal of neuroendocrinology.

[45]  C. Magro,et al.  Susac syndrome: an organ-specific autoimmune endotheliopathy syndrome associated with anti-endothelial cell antibodies. , 2011, American journal of clinical pathology.

[46]  David S. Sharlin,et al.  Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea. , 2011, Endocrinology.

[47]  Jeffrey A. Cohen,et al.  Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria , 2011, Annals of neurology.

[48]  E. Ringelstein,et al.  Neuroimaging in Susac's syndrome: Focus on DTI , 2010, Journal of the Neurological Sciences.

[49]  P. Coyle The role of natalizumab in the treatment of multiple sclerosis. , 2010, The American journal of managed care.

[50]  D. Koelle,et al.  Public TCR Use by Herpes Simplex Virus-2–Specific Human CD8 CTLs , 2010, The Journal of Immunology.

[51]  Abigail Wacher,et al.  Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. , 2009, Blood.

[52]  K. Wandinger,et al.  Anti-endothelial serum antibodies in a patient with Susac's syndrome , 2009, Journal of the Neurological Sciences.

[53]  R. Waugh,et al.  Activated Integrin VLA-4 Localizes to the Lamellipodia and Mediates T Cell Migration on VCAM-11 , 2009, The Journal of Immunology.

[54]  D. Price,et al.  TCR β-Chain Sharing in Human CD8+ T Cell Responses to Cytomegalovirus and EBV1 , 2008, The Journal of Immunology.

[55]  M. Diamond,et al.  CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis , 2008, Proceedings of the National Academy of Sciences.

[56]  H. Lassmann,et al.  Cutting Edge: Multiple Sclerosis-Like Lesions Induced by Effector CD8 T Cells Recognizing a Sequestered Antigen on Oligodendrocytes1 , 2008, The Journal of Immunology.

[57]  R. Egan,et al.  Treatment of Susac’s syndrome , 2008, Journal of the neurological sciences.

[58]  H. Lassmann,et al.  Multiple sclerosis: T-cell receptor expression in distinct brain regions. , 2007, Brain : a journal of neurology.

[59]  R. Egan,et al.  Susac's syndrome: 1975–2005 microangiopathy/autoimmune endotheliopathy , 2007, Journal of the Neurological Sciences.

[60]  W. L. Benedict,et al.  Multiple Sclerosis , 2007, Journal - Michigan State Medical Society.

[61]  E. Ringelstein,et al.  Susac’s syndrome: effective combination of immunosuppression and antiplatelet treatment , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[62]  Ludwig Kappos,et al.  A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. , 2006, The New England journal of medicine.

[63]  E. Waubant,et al.  An open label study of the effects of rituximab in neuromyelitis optica , 2005, Neurology.

[64]  Clare Baecher-Allan,et al.  Loss of Functional Suppression by CD4+CD25+ Regulatory T Cells in Patients with Multiple Sclerosis , 2004, The Journal of experimental medicine.

[65]  C. Sanders Autopsy Report , 2003, Texas reports on biology and medicine.

[66]  D. Richman,et al.  Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections , 2002, Nature Medicine.

[67]  R. Sékaly,et al.  Learning to remember: generation and maintenance of T-cell memory. , 2001, DNA and cell biology.

[68]  C. Poser,et al.  Diagnostic criteria for multiple sclerosis , 2001, Clinical Neurology and Neurosurgery.

[69]  S. Rowland-Jones,et al.  Skewed maturation of memory HIV-specific CD8 T lymphocytes , 2001, Nature.

[70]  F. Sallusto,et al.  Two subsets of memory T lymphocytes with distinct homing potentials and effector functions , 1999, Nature.

[71]  M. Rep,et al.  Phenotypic and Functional Separation of Memory and Effector Human CD8+ T Cells , 1997, The Journal of experimental medicine.

[72]  H. Mcdevitt,et al.  CD8(+) T cell-mediated spontaneous diabetes in neonatal mice. , 1996, Journal of immunology.

[73]  M. Zöller,et al.  The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  F. Sánchez‐Madrid,et al.  Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin , 1992, Nature.

[75]  J. Selhorst,et al.  Microangiopathy of the brain and retina , 1979, Neurology.

[76]  D. Reich,et al.  Multiple Sclerosis , 2018, The New England journal of medicine.

[77]  R. Ransohoff,et al.  The blood-brain barrier. , 2016, Handbook of clinical neurology.

[78]  D. Douek,et al.  TCR beta-chain sharing in human CD8+ T cell responses to cytomegalovirus and EBV. , 2008, Journal of immunology.

[79]  P. Gregersen,et al.  Oligoclonality of CD8+ T cells in multiple sclerosis. , 1996, Autoimmunity.