Prediction of fracture density using genetic algorithm support vector machine based on acoustic logging dataFracture density prediction by GA-SVM

[1]  S. S. Shen,et al.  Applications of Hilbert–Huang transform to non‐stationary financial time series analysis , 2003 .

[2]  Tianyang Li,et al.  Experimental study on the effects of fractures on elastic wave propagation in synthetic layered rocks , 2016 .

[3]  Jonathan M. Lees,et al.  The Hilbert–Huang Transform: A High Resolution Spectral Method for Nonlinear and Nonstationary Time Series , 2013 .

[4]  Fan Yiren Response of Dual Laterolog to Fractures in Fractured Carbonate Formation and Its Interpretation , 2006 .

[5]  A. Cheng,et al.  Quantitative Borehole Acoustic Methods , 2004 .

[6]  J. Harris,et al.  High-resolution crosswell imaging of a West Texas carbonate reservoir; Part 5, Core analysis , 1995 .

[7]  Qingfei Wang,et al.  Genesis of the Guangou karstic bauxite deposit in western Henan, China , 2013 .

[8]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[9]  Yuefeng Sun,et al.  Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas , 2011 .

[10]  Mirko van der Baan,et al.  Empirical mode decomposition for seismic time-frequency analysis , 2013 .

[11]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[12]  I. Jolliffe Principal Component Analysis and Factor Analysis , 1986 .

[13]  C. Hei,et al.  Elastic wave scattering to characterize heterogeneities in the borehole environment , 2016 .

[14]  P. Choquette,et al.  Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates , 1970 .

[15]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[16]  B. Spies Electrical and electromagnetic borehole measurements: A review , 1996 .

[17]  Xiaoming Tang,et al.  Simulation of multipole acoustic logging in cracked porous formations , 2014 .

[18]  De-hua Han,et al.  Pore Shape Effect On Elastic Properties of Carbonate Rocks , 2005 .

[19]  Yunqian Ma,et al.  Selection of Meta-parameters for Support Vector Regression , 2002, ICANN.

[20]  Vojislav Kecman,et al.  Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models , 2001 .

[21]  Fuyong Wang,et al.  Fracture and vug characterization and carbonate rock type automatic classification using X-ray CT images , 2017 .

[22]  C. Jenkins,et al.  Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models , 2009 .

[23]  P. Tse,et al.  A comparison study of improved Hilbert–Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing , 2005 .

[24]  Hou Fang-hao The Developmental Characters of Sedimentary Environments and Lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin , 2003 .

[25]  C. Sayers The elastic properties of carbonates , 2008 .

[26]  S. I. Özkaya Fracture Length Estimation from Borehole Image Logs , 2003 .

[27]  Clive McCann,et al.  Velocities of compressional and shear waves in limestones , 2003 .

[28]  I. D. Gates,et al.  Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study , 2010, Comput. Geosci..

[29]  Y. Zheng,et al.  Processing array acoustic-logging data to image near-borehole geologic structures , 2007 .

[30]  C. H. Cheng,et al.  Borehole Stoneley wave propagation across permeable structures , 1993 .

[31]  Brian E. Hornby,et al.  Fracture evaluation using reflected Stoneley-wave arrivals , 1989 .

[32]  H. Memarian,et al.  Rock physics-based carbonate pore type identification using Parzen classifier , 2016 .

[33]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[34]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[35]  Z. Yongsheng,et al.  Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform , 1998 .

[36]  Stefan M. Luthi,et al.  Fracture apertures from electrical borehole scans , 1990 .

[37]  Mou Da Lithological identification of volcanic rocks from SVM well logging data:Case study in the eastern depression of Liaohe Basin , 2015 .

[38]  G. Eberli,et al.  The Velocity-Deviation Log: A Tool to Predict Pore Type and Permeability Trends in Carbonate Drill Holes from Sonic and Porosity or Density Logs , 1999 .

[39]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[40]  Chun-Feng Li,et al.  Rescaled-range and power spectrum analyses on well-logging data , 2003 .