A Characterization of F-Complete Type Assignments

The aim of this paper is to investigate the soundness and completeness of the intersection type discipline (for terms of the (untyped ?-calculus) with respect to the F-semantics (F-soundness and F-completeness).As pointed out by Scott, if D is the domain of a ?-model, there is a subset F of D whose elements are the `canonical? representatives of functions. The F-semantics of types takes into account that theintuitive meaning of “???” is `the type of functions with domain ? and range ?? and interprets ??? as a subset of F.The type theories which induce F-complete type assignments are characterized. It follows that a type assignment is F-complete iff equal terms get equal types and, whenever M has a type ???n, where ? is a type variable and ? is the `universal? type, the term ?z1?zn?Mz1?zn has type ?. Here we assume that z1?z.n do not occur free in M.

[1]  Elio Giovannetti,et al.  Completeness Results for a Polymorphic Type System , 1983, CAAP.

[2]  Sören Stenlund Combinators, λ-Terms and Proof Theory , 2011 .

[3]  Mario Coppo,et al.  Completeness of Type Assignment in Continuous Lambda Models , 1984, Theor. Comput. Sci..

[4]  Mariangiola Dezani-Ciancaglini,et al.  F-Semantics for Intersection Type Discipline , 1984, Semantics of Data Types.

[5]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[6]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[7]  Daniel Leivant,et al.  Polymorphic type inference , 1983, POPL '83.

[8]  R. Hindley The Principal Type-Scheme of an Object in Combinatory Logic , 1969 .

[9]  G. Longo,et al.  Lambda-Calculus Models and Extensionality , 1980, Math. Log. Q..

[10]  Dana S. Scott,et al.  Lambda Calculus: Some Models, Some Philosophy , 1980 .

[11]  Mariangiola Dezani-Ciancaglini,et al.  A new type assignment for λ-terms , 1978, Arch. Math. Log..

[12]  M. Hyland A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus , 1976 .

[13]  Christopher P. Wadsworth,et al.  The Relation Between Computational and Denotational Properties for Scott's Dinfty-Models of the Lambda-Calculus , 1976, SIAM J. Comput..

[14]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[15]  Marcel Crabbé H. B. Curry, J. R. Hindley, J. P. Seldin, Combinatory Logic. Vol. II , 1974 .

[16]  Mariangiola Dezani-Ciancaglini,et al.  Functional Characters of Solvable Terms , 1981, Math. Log. Q..

[17]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[18]  J. Roger Hindley,et al.  The Completeness Theorem for Typing lambda-Terms , 1983, Theor. Comput. Sci..

[19]  J. Roger Hindley Curry's Type-Rules are Complete with Respect to the F-Semantics too , 1983, Theor. Comput. Sci..

[20]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[21]  Mario Coppo,et al.  An Extended Polymorphic Type System for Applicative Languages , 1980, MFCS.

[22]  Ravi Sethi,et al.  A semantic model of types for applicative languages , 1982, LFP '82.

[23]  Mariangiola Dezani-Ciancaglini,et al.  Type Theories, Normal Forms and D_\infty-Lambda-Models , 1987, Inf. Comput..

[24]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[25]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[26]  Giuseppe Longo,et al.  Set-theoretical models of λ-calculus: theories, expansions, isomorphisms , 1983, Ann. Pure Appl. Log..

[27]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[28]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[29]  Jean-Jacques Lévy,et al.  An Algebraic Interpretation of the lambda beta K-Calculus; and an Application of a Labelled lambda -Calculus , 1976, Theor. Comput. Sci..

[30]  M. Dezani-Ciancaglini,et al.  Extended Type Structures and Filter Lambda Models , 1984 .

[31]  John Mitchell,et al.  Type Inference and Type Containment , 1984, Semantics of Data Types.