Kalman and smooth variable structure filters for robust estimation

The extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are among the most popular estimation methods. The smooth variable structure filter (SVSF) is a relatively new sliding mode estimator. In an effort to use the accuracy of the EKF and the UKF and the robustness of the SVSF, the filters have been combined, resulting in two new estimation strategies, called the EK-SVSF and the UK-SVSF, respectively. The algorithms were validated by testing them on a well-known target tracking computer experiment.

[1]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[2]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[3]  A. Bryson,et al.  Discrete square root filtering: A survey of current techniques , 1971 .

[4]  Saeid Habibi,et al.  Parameter Identification for a High-Performance Hydrostatic Actuation System Using the Variable Structure Filter Concept , 2007 .

[5]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[6]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[7]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[8]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[9]  Christopher Edwards,et al.  Sliding mode observers for robust detection and reconstruction of actuator and sensor faults , 2003 .

[10]  R. Bucy,et al.  Filtering for stochastic processes with applications to guidance , 1968 .

[11]  Thiagalingam Kirubarajan,et al.  Precision large scale air traffic surveillance using IMM/assignment estimators , 1999 .

[12]  H. Sorenson Least-squares estimation: from Gauss to Kalman , 1970, IEEE Spectrum.

[13]  Saeid Habibi,et al.  The Variable Structure Filter , 2002 .

[14]  Stephen Andrew Gadsden,et al.  SMOOTH VARIABLE STRUCTURE FILTERING: THEORY AND APPLICATIONS , 2011 .

[15]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[16]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[17]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[18]  Thiagalingam Kirubarajan,et al.  Traffic Surveillance Using IMM/Assignment Estimators , 1999 .

[19]  Jin-Bae Park,et al.  Robust Kalman filtering via Krein space estimation , 2004 .

[20]  Dennis S. Bernstein,et al.  Reduced-rank unscented Kalman filtering using Cholesky-based decomposition , 2008, 2008 American Control Conference.

[21]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[22]  Thomas Kailath,et al.  Linear Systems , 1980 .

[23]  Tamer Bąar Optimum performance levels for minimax filters, predictors and smoothers , 1991 .

[24]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[25]  Saeid Habibi,et al.  The Smooth Variable Structure Filter , 2007, Proceedings of the IEEE.

[26]  S. Andrew Gadsden,et al.  A new form of the smooth variable structure filter with a covariance derivation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[27]  V. Utkin Variable structure systems with sliding modes , 1977 .

[28]  Sven Hammarling,et al.  A Survey of Numerical Aspects of Plane Rotations , 1977 .

[29]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[30]  G. Bierman Measurement updating using the U-D factorization , 1975 .

[31]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[32]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[33]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[34]  Saeid Habibi,et al.  A New Robust Filtering Strategy for Linear Systems , 2012 .

[35]  S. Andrew Gadsden,et al.  Derivation of an optimal boundary layer width for the smooth variable structure filter , 2011, Proceedings of the 2011 American Control Conference.

[36]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[37]  R. T. Gregory,et al.  On the reduction of an arbitrary real square matrix to tridiagonal form , 1964 .

[38]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..