Topological Characterization of Complex Systems: Using Persistent Entropy

In this paper, we propose a methodology for deriving a model of a complex system by exploiting the information extracted from topological data analysis. Central to our approach is the S[B] paradigm in which a complex system is represented by a two-level model. One level, the structural S one, is derived using the newly-introduced quantitative concept of persistent entropy, and it is described by a persistent entropy automaton. The other level, the behavioral B one, is characterized by a network of interacting computational agents. The presented methodology is applied to a real case study, the idiotypic network of the mammalian immune system.

[1]  Marco Bernardo,et al.  Encoding Timed Models as Uniform Labeled Transition Systems , 2013, EPEW.

[2]  Vineet Gupta,et al.  Chu spaces: a model of concurrency , 1994 .

[3]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[4]  G. Parisi A simple model for the immune network. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Jonsson Simplicial complexes of graphs , 2007 .

[6]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[7]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[8]  NICHOLAS R. JENNINGS,et al.  An agent-based approach for building complex software systems , 2001, CACM.

[9]  D. L. Stein,et al.  Nature Versus Nurture in Complex and Not-So-Complex Systems , 2014, 1405.7715.

[10]  F Castiglione,et al.  Design and implementation of an immune system simulator , 2001, Comput. Biol. Medicine.

[11]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[12]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[13]  Emanuela Merelli,et al.  Non locality, Topology, Formal languages: New Global Tools to Handle Large Data Sets , 2013, ICCS.

[14]  Jason Brownlee,et al.  Complex adaptive systems , 2007 .

[15]  Anastasios Xepapadeas,et al.  Modeling Complex Systems , 2010 .

[16]  Emanuela Merelli,et al.  Topology driven modeling: the IS metaphor , 2014, Natural Computing.

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  David E. Crowley,et al.  Topological data analysis of Escherichia coli O157:H7 and non-O157 survival in soils , 2014, Front. Cell. Infect. Microbiol..

[19]  Emanuela Merelli,et al.  Characterisation of the Idiotypic Immune Network Through Persistent Entropy , 2014, ECCS.

[20]  G. Hoffmann A theory of regulation and self‐nonself discrimination in an immune network , 1975, European journal of immunology.

[21]  Nicola Paoletti,et al.  Adaptability checking in complex systems , 2016, Sci. Comput. Program..

[22]  P. Sloot,et al.  UvA-DARE ( Digital Academic Repository ) HIV reservoirs and immune surveillance evasion cause the failure of structured treatment interruptions : a computational study , 2012 .

[23]  N K Jerne,et al.  Towards a network theory of the immune system. , 1973, Annales d'immunologie.

[24]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[25]  Vaughan R. Pratt,et al.  Higher dimensional automata revisited , 2000, Mathematical Structures in Computer Science.

[26]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[27]  Francesco Vaccarino,et al.  Topological Strata of Weighted Complex Networks , 2013, PloS one.

[28]  William J. Stewart,et al.  Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling , 2009 .

[29]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[30]  Yassine Lakhnech,et al.  Hierarchical Automata as Model for Statecharts , 1997, ASIAN.

[31]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[32]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[33]  Emanuela Merelli,et al.  The Topological Field Theory of Data: a program towards a novel strategy for data mining through data language , 2015 .

[34]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[35]  Jerne Nk Towards a network theory of the immune system. , 1974 .