Molecular replacement using structure predictions from databases

Predicted ab initio protein models from online databases are a useful supplement to the PDB for molecular replacement, but usually require nontrivial processing to succeed.

[1]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[2]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[3]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[4]  Norman Stein,et al.  CHAINSAW: a program for mutating pdb files used as templates in molecular replacement , 2008 .

[5]  Peter B. McGarvey,et al.  UniRef: comprehensive and non-redundant UniProt reference clusters , 2007, Bioinform..

[6]  L. Kang,et al.  Crystal structure of Clostridium thermocellum ribose-5-phosphate isomerase B reveals properties critical for fast enzyme kinetics , 2011, Applied Microbiology and Biotechnology.

[7]  Jianlin Cheng,et al.  CONFOLD: Residue‐residue contact‐guided ab initio protein folding , 2015, Proteins.

[8]  O. Mayans,et al.  Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds , 2016, IUCrJ.

[9]  Ronan M Keegan,et al.  Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment , 2018, Acta crystallographica. Section D, Structural biology.

[10]  Torsten Schwede,et al.  The SWISS-MODEL Repository and associated resources , 2008, Nucleic Acids Res..

[11]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[12]  Yang Zhang,et al.  SPICKER: A clustering approach to identify near‐native protein folds , 2004, J. Comput. Chem..

[13]  Martyn D. Winn,et al.  Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models , 2015, Acta crystallographica. Section D, Biological crystallography.

[14]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[15]  Arne Elofsson,et al.  ProQ3D: improved model quality assessments using deep learning , 2016, Bioinform..

[16]  Mirco Michel,et al.  PconsFam: An Interactive Database of Structure Predictions of Pfam Families. , 2019, Journal of molecular biology.

[17]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[18]  Ronan M Keegan,et al.  Ensembles generated from crystal structures of single distant homologues solve challenging molecular-replacement cases in AMPLE , 2018, Acta crystallographica. Section D, Structural biology.

[19]  J Lundström,et al.  Pcons: A neural‐network–based consensus predictor that improves fold recognition , 2001, Protein science : a publication of the Protein Society.

[20]  Huw T Jenkins,et al.  Fragon: rapid high-resolution structure determination from ideal protein fragments , 2018, Acta crystallographica. Section D, Structural biology.

[21]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[22]  Adam Godzik,et al.  The importance of alignment accuracy for molecular replacement. , 2004, Acta crystallographica. Section D, Biological crystallography.

[23]  Martin Savko,et al.  SIMBAD: a sequence-independent molecular-replacement pipeline , 2017, Acta crystallographica. Section D, Structural biology.

[24]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[25]  Ronan M Keegan,et al.  AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models. , 2012, Acta crystallographica. Section D, Biological crystallography.

[26]  P. Bradley,et al.  High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.

[27]  P. Sliż,et al.  Protein structure determination by exhaustive search of Protein Data Bank derived databases , 2010, Proceedings of the National Academy of Sciences.

[28]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  Sameer Velankar,et al.  Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains , 2012, Nucleic Acids Res..

[30]  Richard Axel,et al.  Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 Å resolution , 1992, Cell.

[31]  G. Sheldrick,et al.  Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.

[32]  Cole H. Christie,et al.  Protein Data Bank: the single global archive for 3D macromolecular structure data , 2018, Nucleic Acids Res..

[33]  A. Vagin,et al.  MoRDa, an automatic molecular replacement pipeline , 2015 .

[34]  Kathrin Meindl,et al.  Exploiting tertiary structure through local folds for crystallographic phasing , 2013, Nature Methods.

[35]  Juergen Haas,et al.  The Protein Model Portal—a comprehensive resource for protein structure and model information , 2013, Database J. Biol. Databases Curation.

[36]  Yang Zhang,et al.  Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field , 2012, Proteins.

[37]  Yang Zhang,et al.  How significant is a protein structure similarity with TM-score = 0.5? , 2010, Bioinform..

[38]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[39]  R. Othman,et al.  Computational identification of self‐inhibitory peptides from envelope proteins , 2012, Proteins.

[40]  N. Srinivasan,et al.  Determination of crystal structures of proteins of unknown identity using a marathon molecular replacement procedure: structure of Stenotrophomonas maltophilia phosphate-binding protein. , 2016, Acta crystallographica. Section D, Structural biology.

[41]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[42]  Ben M. Webb,et al.  ModBase, a database of annotated comparative protein structure models and associated resources , 2013, Nucleic Acids Res..

[43]  Daniel J Rigden,et al.  Applications of contact predictions to structural biology , 2017, IUCrJ.

[44]  Rob Horsefield,et al.  High-resolution x-ray structure of human aquaporin 5 , 2008, Proceedings of the National Academy of Sciences.

[45]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[46]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[47]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[48]  Silvio C. E. Tosatto,et al.  InterPro in 2019: improving coverage, classification and access to protein sequence annotations , 2018, Nucleic Acids Res..

[49]  Kliment Olechnovič,et al.  VoroMQA: Assessment of protein structure quality using interatomic contact areas , 2017, Proteins.

[50]  G. Vriend,et al.  Prediction of protein conformational freedom from distance constraints , 1997, Proteins.

[51]  G. Sheldrick,et al.  Practical structure solution with ARCIMBOLDO , 2012, Acta crystallographica. Section D, Biological crystallography.

[52]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[53]  Randy J. Read,et al.  Improvement of molecular-replacement models with Sculptor , 2011, Acta crystallographica. Section D, Biological crystallography.

[54]  Roland L. Dunbrack,et al.  The Rosetta all-atom energy function for macromolecular modeling and design , 2017, bioRxiv.

[55]  Ronan M Keegan,et al.  Molecular replacement using ab initio polyalanine models generated with ROSETTA. , 2008, Acta crystallographica. Section D, Biological crystallography.

[56]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[57]  C. Sander,et al.  Direct-coupling analysis of residue coevolution captures native contacts across many protein families , 2011, Proceedings of the National Academy of Sciences.

[58]  Claudia Millán,et al.  Structure solution with ARCIMBOLDO using fragments derived from distant homology models , 2014, The FEBS journal.

[59]  Andrea Thorn,et al.  Extending molecular-replacement solutions with SHELXE , 2013, Acta crystallographica. Section D, Biological crystallography.

[60]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[61]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[62]  D. Baker,et al.  Clustering of low-energy conformations near the native structures of small proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Garib N. Murshudov,et al.  Model preparation in MOLREP and examples of model improvement using X-ray data , 2007, Acta crystallographica. Section D, Biological crystallography.

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[65]  Randy J Read,et al.  A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error , 2016, Acta crystallographica. Section D, Structural biology.

[66]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[67]  Yang Zhang,et al.  Scoring function for automated assessment of protein structure template quality , 2004, Proteins.