Constant density visualizations of non-uniform distributions of data

The cartographic Principle of Constant Information Density suggests that the amount of information in an interactive visualization should remain constant as the user pans and zooms. In previous work, we presented a system, VIDA (Visual Information Density Adjuster), which helps users manually construct applications in which overall display density remains constant. In the context of semantic zoom systems, this approach ensures uniformity in the z dimension, but does not extend naturally to ensuring uniformity in the x and y dimensions. In this paper, we present a new approach that automatically creates displays that are uniform in the x, y, and z dimensions. In the new system, users express constraints about visual representations that should appear in the display. The system applies these constraints to subdivisions of the display such that each subdivision meets a target density value. We have implemented our technique in the DataSplash/VIDA database visualization environment. We describe our algorithm, implementation, and the advantages and disadvantages of our approach.

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  Margaret M. Burnett,et al.  Visual Programming , 1995 .

[3]  Joseph M. Hellerstein,et al.  CONTROL: continuous output and navigation technology with refinement on-line , 1998, SIGMOD '98.

[4]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[5]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[6]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[7]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[8]  Nan C. Shu,et al.  Visual Programming: Perspectives and Approaches , 1989, IBM Syst. J..

[9]  Michael Stonebraker,et al.  Constant information density in zoomable interfaces , 1998, AVI '98.

[10]  F. Töpfer,et al.  The Principles of Selection , 1966 .

[11]  R. McMaster,et al.  Map Generalization: Making Rules for Knowledge Representation , 1991 .

[12]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[13]  B. Shneiderman,et al.  The dynamic HomeFinder: evaluating dynamic queries in a real-estate information exploration system , 1992, SIGIR '92.

[14]  Andrew U. Frank,et al.  Multiple representations for cartographic objects in a multi-scale tree - An intelligent graphical zoom , 1994, Comput. Graph..

[15]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[16]  Michael Stonebraker,et al.  The POSTGRES next generation database management system , 1991, CACM.

[17]  Eben M. Haber,et al.  User-oriented visual layout at multiple granularities , 1996, AVI '96.

[18]  Maureen C. Stone,et al.  Enhanced dynamic queries via movable filters , 1995, CHI '95.

[19]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[20]  T. Landauer,et al.  Handbook of Human-Computer Interaction , 1997 .

[21]  Wilbert O. Galitz,et al.  User-Interface Screen Design , 1993 .

[22]  Michael Stonebraker,et al.  Tioga-2: a direct manipulation database visualization environment , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[23]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[24]  James D. Hollan,et al.  Pad++: a zooming graphical interface for exploring alternate interface physics , 1994, UIST '94.