Phase transition regulation and caloric effect

[1]  Guangzu Zhang,et al.  Field-driven merging of polarizations and enhanced electrocaloric effect in BaTiO3-based lead-free ceramics , 2022, Journal of Advanced Ceramics.

[2]  Guangzu Zhang,et al.  Giant Room-Temperature Electrocaloric Effect of Polymer-Ceramic Composites with Orientated BaSrTiO3 Nanofibers. , 2022, Nano letters.

[3]  Zhuhua Zhang,et al.  Room‐Temperature Colossal Elastocaloric Effects in Three‐Dimensional Graphene Architectures: An Atomistic Study , 2022, Advanced Functional Materials.

[4]  H. Zhang,et al.  Reversible colossal barocaloric effect dominated by disordering of organic chains in (CH3–(CH2)n−1–NH3)2MnCl4 single crystals , 2022, NPG Asia Materials.

[5]  S. Zuo,et al.  Enhanced Performance of ΔTad upon Frequent Alternating Magnetic Fields in FeRh Alloys by Introducing Second Phases. , 2022, ACS applied materials & interfaces.

[6]  Lingwei Li,et al.  Recent progress in the magnetic and cryogenic magnetocaloric properties of RE2TMTM’O6 double perovskite oxides , 2022, Journal of Materials Science & Technology.

[7]  T. Lookman,et al.  Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy , 2022, Acta Materialia.

[8]  Jiang Wang,et al.  Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound , 2022, Science China Materials.

[9]  Zhidong Zhang,et al.  Colossal Barocaloric Effect in Carboranes as a Performance Tradeoff , 2022, Advanced Functional Materials.

[10]  Jiang Wang,et al.  Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide , 2022, Acta Materialia.

[11]  Weijun Ren,et al.  Ultrasensitive barocaloric material for room-temperature solid-state refrigeration , 2021, Nature Communications.

[12]  Jarad A. Mason,et al.  Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites , 2021, Nature Communications.

[13]  L. Zuo,et al.  Giant Elastocaloric Effect in Ni-Mn-Ga-Based Alloys Boosted by a Large Lattice Volume Change upon the Martensitic Transformation. , 2021, ACS applied materials & interfaces.

[14]  Xingyi Huang,et al.  High-entropy polymer produces a giant electrocaloric effect at low fields , 2021, Nature.

[15]  X. Lou,et al.  Colossal Reversible Barocaloric Effects in Layered Hybrid Perovskite (C10H21NH3)2MnCl4 under Low Pressure Near Room Temperature , 2021, Advanced Functional Materials.

[16]  X. Moya,et al.  Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X=Cl, Br) plastic crystals , 2021 .

[17]  Jing He,et al.  Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration , 2021 .

[18]  L. Balicas,et al.  Giant and Reversible Barocaloric Effect in Trinuclear Spin‐Crossover Complex Fe3(bntrz)6(tcnset)6 , 2021, Advanced materials.

[19]  H. Sepehri-Amin,et al.  Improved coercivity and squareness in bulk hot-deformed Nd–Fe–B magnets by two-step eutectic grain boundary diffusion process , 2021 .

[20]  X. Moya,et al.  Caloric materials for cooling and heating , 2020, Science.

[21]  Jia-Zheng Hao,et al.  The sign of lattice and spin entropy change in the giant magnetocaloric materials with negative lattice expansions , 2020 .

[22]  Jia-Zheng Hao,et al.  Large enhancement of magnetocaloric effect driven by hydrostatic pressure in HoCuSi compound , 2020 .

[23]  C. Jia,et al.  Understanding colossal barocaloric effects in plastic crystals , 2020, Nature Communications.

[24]  Qinghua Zhang,et al.  An All‐Scale Hierarchical Architecture Induces Colossal Room‐Temperature Electrocaloric Effect at Ultralow Electric Field in Polymer Nanocomposites , 2020, Advanced materials.

[25]  X. Bai,et al.  Regulation of phase transition and magnetocaloric effect by ferroelectric domains in FeRh/PMN-PT heterojunctions , 2020 .

[26]  M. Yan,et al.  Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration , 2020 .

[27]  Jia-Zheng Hao,et al.  Multicaloric and coupled-caloric effects , 2020 .

[28]  F. Hu,et al.  Large Enhancement of Magnetocaloric and Barocaloric Effects by Hydrostatic Pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-Type Structure , 2020, Chemistry of Materials.

[29]  A. Gomes,et al.  Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling , 2017, Chinese Journal of Polymer Science.

[30]  龙克文,et al.  一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性 , 2019 .

[31]  Jia-Zheng Hao,et al.  Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15 , 2019, APL Materials.

[32]  Jia Li,et al.  Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures , 2019, Nano Energy.

[33]  R. Mole,et al.  Colossal barocaloric effects in plastic crystals , 2018, Nature.

[34]  Guangrui Wang,et al.  Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys , 2018, Chinese Physics B.

[35]  Hu Zhang,et al.  Effects of Surface Modifications on the Fatigue Life of Unconstrained Ni-Mn-Ga Single Crystals in a Rotating Magnetic Field , 2018 .

[36]  T. Zhao,et al.  Machine learning technique for prediction of magnetocaloric effect in La(Fe,Si/Al)13-based materials , 2018, Chinese Physics B.

[37]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[38]  Jun Liu,et al.  Magnetostructural transformation and magnetocaloric effect in Mn48−xVxNi42Sn10 ferromagnetic shape memory alloys , 2018 .

[39]  X. Moya,et al.  Giant barocaloric effects over a wide temperature range in superionic conductor AgI , 2017, Nature Communications.

[40]  Roy Kornbluh,et al.  Highly efficient electrocaloric cooling with electrostatic actuation , 2017, Science.

[41]  L. Mañosa,et al.  Materials with Giant Mechanocaloric Effects: Cooling by Strength , 2017, Advanced materials.

[42]  B. Shen,et al.  The magnetic properties and magnetocaloric effects in binary R–T (R = Pr, Gd, Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds , 2017 .

[43]  V. Shavrov,et al.  Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3 , 2016 .

[44]  Nini Pryds,et al.  A regenerative elastocaloric heat pump , 2016, Nature Energy.

[45]  S. Taskaev,et al.  Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz , 2016, 1802.10391.

[46]  J. Staunton,et al.  Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6 , 2016, 1605.03323.

[47]  F. Hu,et al.  Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. , 2015, Journal of the American Chemical Society.

[48]  Jian Liu,et al.  Electric Field Control of the Magnetocaloric Effect , 2015, Advanced materials.

[49]  J. Sun,et al.  Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1−xAlx compounds , 2014 .

[50]  N. Oliveira Giant magnetocaloric and barocaloric effects in R5Si2Ge2 (R = Tb, Gd) , 2013 .

[51]  H. Srikanth,et al.  Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power , 2012 .

[52]  K. Gschneidner,et al.  On the nature of the magnetocaloric effect of the first-order magnetostructural transition , 2012 .

[53]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[54]  Huibin Xu,et al.  Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets , 2011, Nature Communications.

[55]  V. Sharma,et al.  The effect of external pressure on the magnetocaloric effect of Ni–Mn–In alloy , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[57]  Mehmet Acet,et al.  Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. , 2010, Nature materials.

[58]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[59]  Bing Li,et al.  Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In , 2009 .

[60]  Long-Qing Chen,et al.  Effect of second-phase particle morphology on grain growth kinetics , 2009 .

[61]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[62]  F. Hu,et al.  Entropy changes associated with the first-order magnetic transition in LaFe13-xSix , 2006 .

[63]  F. Hu,et al.  Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1-xCOx)11.9Si1.1 , 2005 .

[64]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[65]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[66]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[67]  F. Hu,et al.  Great magnetic entropy change in La(Fe, M)13 (M=Si, Al) with Co doping , 2000 .

[68]  Vitalij K. Pecharsky,et al.  Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .

[69]  S. A. Nikitin,et al.  Anomalously high entropy change in FeRh alloy , 1996 .

[70]  V. Johnson Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides , 1975 .