UniPROBE: an online database of protein binding microarray data on protein–DNA interactions

The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA-binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive PBM data on the preferences of proteins for all possible sequence variants (‘words’) of length k (‘k-mers’), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In total, the database hosts DNA-binding data for over 175 nonredundant proteins from a diverse collection of organisms, including the prokaryote Vibrio harveyi, the eukaryotic malarial parasite Plasmodium falciparum, the parasitic Apicomplexan Cryptosporidium parvum, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, mouse and human. Current web tools include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences. The UniPROBE database is available at http://thebrain.bwh.harvard.edu/uniprobe/.

[1]  William Stafford Noble,et al.  Quantifying similarity between motifs , 2007, Genome Biology.

[2]  K. Struhl,et al.  Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein , 1989, Molecular and cellular biology.

[3]  David Botstein,et al.  Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association , 2001, Nature Genetics.

[4]  Kimberly Van Auken,et al.  WormBase 2007 , 2007, Nucleic Acids Res..

[5]  W. Raub From the National Institutes of Health. , 1990, JAMA.

[6]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[7]  Martha L. Bulyk,et al.  Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data , 2006, BMC Bioinformatics.

[8]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[9]  Gary D. Stormo,et al.  enoLOGOS: a versatile web tool for energy normalized sequence logos , 2005, Nucleic Acids Res..

[10]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[11]  M. Berger,et al.  The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters , 2008, Molecular microbiology.

[12]  P. Brown,et al.  Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. , 2000, Molecular cell.

[13]  A. Philippakis,et al.  Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities , 2006, Nature Biotechnology.

[14]  Kara Dolinski,et al.  Gene Ontology annotations at SGD: new data sources and annotation methods , 2007, Nucleic Acids Res..

[15]  Z. Weng,et al.  A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome , 2006, Cell.

[16]  G. Stormo,et al.  Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. , 2001, Nucleic acids research.

[17]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[18]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[19]  Martha L Bulyk,et al.  DNA microarray technologies for measuring protein-DNA interactions. , 2006, Current opinion in biotechnology.

[20]  G. Church,et al.  Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. , 2002, Nucleic acids research.

[21]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[22]  Daniel E. Newburger,et al.  Variation in Homeodomain DNA Binding Revealed by High-Resolution Analysis of Sequence Preferences , 2008, Cell.

[23]  Martha L Bulyk,et al.  Microarray Analyses of Newborn Mouse Ovaries Lacking Nobox1 , 2007, Biology of reproduction.

[24]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[25]  Ole Winther,et al.  JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update , 2007, Nucleic Acids Res..

[26]  William Noble Grundy,et al.  Meta-MEME: motif-based hidden Markov models of protein families , 1997, Comput. Appl. Biosci..

[27]  Fangxue Sherry He,et al.  Systematic identification of mammalian regulatory motifs' target genes and functions , 2008, Nature Methods.

[28]  M. Berger,et al.  Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors , 2009, Nature Protocols.

[29]  Magdalena I. Swanson,et al.  PAZAR: a framework for collection and dissemination of cis-regulatory sequence annotation , 2007, Genome Biology.

[30]  P. Bucher,et al.  High-throughput SELEX–SAGE method for quantitative modeling of transcription-factor binding sites , 2002, Nature Biotechnology.

[31]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[32]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[33]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[34]  Anthony A. Philippakis,et al.  Design of Compact, Universal DNA Microarrays for Protein Binding Microarray Experiments , 2007, RECOMB.

[35]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .