LMDZ6A: The Atmospheric Component of the IPSL Climate Model With Improved and Better Tuned Physics

This study presents the version of the LMDZ global atmospheric model used as the atmospheric component of the Institut Pierre Simon Laplace coupled model (IPSL‐CM6A‐LR) to contribute to the 6th phase of the international Coupled Model Intercomparison Project (CMIP6). This LMDZ6A version includes original convective parameterizations that define the LMDZ “New Physics”: a mass flux parameterization of the organized structures of the convective boundary layer, the “thermal plume model,” and a parameterization of the cold pools created by reevaporation of convective rainfall. The vertical velocity associated with thermal plumes and gust fronts of cold pools are used to control the triggering and intensity of deep convection. Because of several shortcomings, the early version 5B of this New Physics was worse than the previous “Standard Physics” version 5A regarding several classical climate metrics. To overcome these deficiencies, version 6A includes new developments: a stochastic triggering of deep convection, a modification of the thermal plume model that allows the representation of stratocumulus and cumulus clouds in a unified framework, an improved parameterization of very stable boundary layers, and the modification of the gravity waves scheme targeting the quasi‐biennal oscillation in the stratosphere. These improvements to the physical content and a more well‐defined tuning strategy led to major improvements in the LMDZ6A version model climatology. Beyond the presentation of this particular model version and documentation of its climatology, the present paper underlines possible methodological pathways toward model improvement that can be shared across modeling groups.

[1]  S. Bony,et al.  Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model , 2020, Journal of Advances in Modeling Earth Systems.

[2]  F. Hourdin,et al.  Convective Boundary Layer Control of the Sea Surface Temperature in the Tropics , 2020, Journal of Advances in Modeling Earth Systems.

[3]  J. Dufresne,et al.  Implementation of the CMIP6 Forcing Data in the IPSL‐CM6A‐LR Model , 2020, Journal of Advances in Modeling Earth Systems.

[4]  Larry W. Thomason,et al.  A Global Space-based Stratospheric Aerosol Climatology (Version 2.0): 1979–2018 , 2020 .

[5]  M. Moncrieff Toward a Dynamical Foundation for Organized Convection Parameterization in GCMs , 2019, Geophysical Research Letters.

[6]  F. Hourdin,et al.  Unified Parameterization of Convective Boundary Layer Transport and Clouds With the Thermal Plume Model , 2019, Journal of Advances in Modeling Earth Systems.

[7]  A. D. Del Genio,et al.  Ongoing Breakthroughs in Convective Parameterization , 2019, Current Climate Change Reports.

[8]  J. Dufresne,et al.  Accounting for Vertical Subgrid‐Scale Heterogeneity in Low‐Level Cloud Fraction Parameterizations , 2018, Journal of Advances in Modeling Earth Systems.

[9]  G. Schubert,et al.  Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate , 2018, Nature Geoscience.

[10]  Pierre Gentine,et al.  Could Machine Learning Break the Convection Parameterization Deadlock? , 2018, Geophysical Research Letters.

[11]  Pierre Aumond,et al.  Overview of the Meso-NH model version 5.4 and its applications , 2018, Geoscientific Model Development.

[12]  E. Millour,et al.  Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation , 2018 .

[13]  J. Dufresne,et al.  An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A) , 2018 .

[14]  C. Genthon,et al.  Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model , 2018 .

[15]  Laurent Kergoat,et al.  The Surface Energy Budget Computed at the Grid‐Scale of a Climate Model Challenged by Station Data in West Africa , 2017 .

[16]  É. Vignon The extreme atmospheric boundary layer over the Antarctic Plateau and its representation in climate models , 2017 .

[17]  Larry W. Thomason,et al.  A global space-based stratospheric aerosol climatology: 1979–2016 , 2017 .

[18]  Cecile Hannay,et al.  Practice and philosophy of climate model tuning across six U.S. modeling centers. , 2017, Geoscientific model development.

[19]  F. Forget,et al.  Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets , 2017, 1707.06927.

[20]  Jean-Baptiste Madeleine,et al.  Antarctic boundary layer parametrization in a general circulation model: 1‐D simulations facing summer observations at Dome C , 2017 .

[21]  J. Dufresne,et al.  An interactive ocean surface albedo scheme: formulation and evaluation intwo atmospheric models , 2017 .

[22]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[23]  Veronika Eyring,et al.  CMIP5 Scientific Gaps and Recommendations for CMIP6 , 2017 .

[24]  Liming Zhou,et al.  Evaluation of simulated climatological diurnal temperature range in CMIP5 models from the perspective of planetary boundary layer turbulent mixing , 2017, Climate Dynamics.

[25]  David A. Randall,et al.  Impacts of cloud superparameterization on projected daily rainfall intensity climate changes in multiple versions of the Community Earth System Model , 2016 .

[26]  F. Lott,et al.  Climatology of the middle atmosphere in LMDz: Impact of source‐related parameterizations of gravity wave drag , 2016 .

[27]  F. Forget,et al.  Observed glacier and volatile distribution on Pluto from atmosphere–topography processes , 2016, Nature.

[28]  B. Goswami,et al.  Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world , 2016, Climate Dynamics.

[29]  J. Dufresne,et al.  Air moisture control on ocean surface temperature, hidden key to the warm bias enigma , 2015 .

[30]  F. Lott,et al.  A parameterization of gravity waves emitted by fronts and jets , 2015 .

[31]  M. Ghil,et al.  Impact of Anomalous Northward Oceanic Heat Transport on Global Climate in a Slab Ocean Setting , 2015, Journal of Climate.

[32]  Hui Wan,et al.  Short‐term time step convergence in a climate model , 2015, Journal of advances in modeling earth systems.

[33]  Sungsu Park,et al.  A Unified Convection Scheme (UNICON). Part I: Formulation , 2014 .

[34]  Catherine Rio,et al.  Deep Convection Triggering by Boundary Layer Thermals. Part I: LES Analysis and Stochastic Triggering Formulation , 2014 .

[35]  Catherine Rio,et al.  Deep Convection Triggering by Boundary Layer Thermals. Part II: Stochastic Triggering Parameterization for the LMDZ GCM , 2014 .

[36]  A. Holtslag,et al.  Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models , 2013 .

[37]  Michael Goldstein,et al.  History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble , 2013, Climate Dynamics.

[38]  A. Arakawa,et al.  A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part II , 2013 .

[39]  Philippe Ciais,et al.  Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model , 2013 .

[40]  P. Bechtold,et al.  Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? , 2013 .

[41]  F. Lott,et al.  A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere , 2013 .

[42]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[43]  A. Arakawa,et al.  A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I , 2013 .

[44]  Catherine Rio,et al.  Resolved Versus Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical Scheme for Cumulus Clouds , 2013, Boundary-Layer Meteorology.

[45]  Marie-Alice Foujols,et al.  Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model , 2013, Climate Dynamics.

[46]  Ann M. Fridlind,et al.  Control of deep convection by sub-cloud lifting processes: the ALP closure in the LMDZ5B general circulation model , 2013, Climate Dynamics.

[47]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[48]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[49]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[50]  B. Charnay,et al.  Titan global climate model: A new 3-dimensional version of the IPSL Titan GCM , 2012 .

[51]  Arnaud Jam Paramétrisation de la couche limite : du modèle des thermiques au modèle statistique de nuage , 2012 .

[52]  Michael F. Wehner,et al.  “Super‐parameterization”: A better way to simulate regional extreme precipitation? , 2011 .

[53]  David M. Winker,et al.  Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties , 2011 .

[54]  B. Stevens,et al.  On the Factors Modulating the Stratocumulus to Cumulus Transitions , 2011 .

[55]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[56]  Francis Codron Ekman heat transport for slab oceans , 2011, Climate Dynamics.

[57]  Jean-Philippe Lafore,et al.  A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part I: The Models , 2010 .

[58]  F. Chéruy,et al.  A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part II: 1D Simulations , 2010 .

[59]  Tristan S. L'Ecuyer,et al.  The Distribution of Rainfall over Oceans from Spaceborne Radars , 2010 .

[60]  David A. Randall,et al.  An ocean‐atmosphere climate simulation with an embedded cloud resolving model , 2010 .

[61]  Frédéric Hourdin,et al.  Shifting the diurnal cycle of parameterized deep convection over land , 2009 .

[62]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[63]  Jan Polcher,et al.  Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes , 2008 .

[64]  M. Haeffelin,et al.  Assessment of physical parameterizations using a global climate model with stretchable grid and nudging , 2007 .

[65]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[66]  F. Hourdin,et al.  The stratospheric version of LMDz: dynamical climatologies, arctic oscillation, and impact on the surface climate , 2005 .

[67]  D. Randall,et al.  Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes , 2005 .

[68]  J. Grandpeix,et al.  Improved mixing representation in Emanuel's convection scheme , 2004 .

[69]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[70]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[71]  Michael Bruen,et al.  Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes , 2002 .

[72]  Jean-Christophe Golaz,et al.  Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land , 2002 .

[73]  F. Hourdin,et al.  Parameterization of the Dry Convective Boundary Layer Based on a Mass Flux Representation of Thermals , 2002 .

[74]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[75]  Pierre Etchevers,et al.  An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site , 2001 .

[76]  John C. King,et al.  Sensitivity of modelled Antarctic climate to surface and boundary‐layer flux parametrizations , 2001 .

[77]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[78]  R. Somerville,et al.  Implications of Microphysics for Cloud-Radiation Parameterizations: Lessons from TOGA COARE , 2000 .

[79]  F. Guichard,et al.  A Parameterization of Mesoscale Enhancement of Surface Fluxes for Large-Scale Models , 2000 .

[80]  F. Lott Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces , 1999 .

[81]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[82]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[83]  C. O. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation , 1997 .

[84]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[85]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[86]  J. Morcrette Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system , 1991 .

[87]  R. Chatfield,et al.  A two‐stream model of the vertical transport of trace species in the convective boundary layer , 1987 .

[88]  A. Heymsfield Ice Particles Observed in a Cirriform Cloud at , 1986 .

[89]  Tetsuji Yamada,et al.  Simulations of Nocturnal Drainage Flows by a q2l Turbulence Closure Model , 1983 .

[90]  R. Sadourny,et al.  Land surface processes in a simplified general circulation model , 1981 .

[91]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[92]  A. Kasahara,et al.  Computational Aspects of Numerical Models for Weather Prediction and Climate Simulation , 1977 .

[93]  R. Sadourny The Dynamics of Finite-Difference Models of the Shallow-Water Equations , 1975 .

[94]  J. Deardorff,et al.  The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory , 1966 .