Low-resistivity α-phase tungsten films grown by hot-wire assisted atomic layer deposition in high-aspect-ratio structures

Abstract In this work, the so-called hot-wire (HW) assisted atomic layer deposition (HWALD) technique is employed to grow high-purity α-phase tungsten (W) films at a substrate temperature of 275 °C. The films are deposited on thermally grown silicon dioxide (SiO 2 ) in a home-built hot-wall reactor, using alternating pulses of WF 6 and HW-generated atomic hydrogen in the self-limiting surface-reaction manner characteristic for ALD. A W seed layer, needed to enable the HWALD-W process on a SiO 2 surface, is formed prior to each deposition. In-situ spectroscopic ellipsometry is used to monitor the growth behavior and film properties. The films exhibit a high-purity (99 at.%) W, according to X-ray photoelectron spectroscopy. The X-ray diffraction scans reveal the existence of α-phase W. The resistivity measurements by means of four point probe, transfer length method test structures and the Drude-Lorentz SE model all reveal a low resistivity of 15 μΩ·cm. The high-resolution transmission electron microscopy analysis shows a uniform and conformal coverage of high aspect ratio structures, confirming the effective ALD process and the sufficient diffusion of both WF 6 and at-H into deep trenches.

[1]  C. Ting,et al.  Selective Electroless Metal Deposition for Integrated Circuit Fabrication , 1989 .

[2]  R. Wolters,et al.  Hot‐wire assisted ALD of tungsten films: In‐situ study of the interplay between CVD, etching, and ALD modes , 2015 .

[3]  M. O’Keefe,et al.  Phase transformation of sputter deposited tungsten thin films with A‐15 structure , 1996 .

[4]  J. V. Ommen,et al.  Atomic and molecular layer deposition: off the beaten track. , 2016, Chemical communications.

[5]  T. Hahn International tables for crystallography , 2002 .

[6]  B. Van Hao Atomic layer deposition of TiN films: Growth and electrical behavior down to sub-nanometer scale , 2013 .

[7]  Y. Shimogaki,et al.  Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films , 2014 .

[8]  J. Falconer,et al.  Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed , 2015 .

[9]  N. Kwak,et al.  A Comparative Study of the Atomic-Layer-Deposited Tungsten Thin Films as Nucleation Layers for W-Plug Deposition , 2006 .

[10]  H. Swanson,et al.  Standard X‐Ray Diffraction Powder Patterns , 1954 .

[11]  H. Kaplan,et al.  The preparation and characterization of beta-tungsten, a metastable tungsten phase , 1974, Metallurgical and Materials Transactions B.

[12]  A. J. Hegedüs,et al.  Über die Bildungsbedingungen und Eigenschaften des β‐Wolframs. Weiterer Beitrag zur Reduktion des Wolframtrioxyds , 1957 .

[13]  S. Pollack,et al.  Superconductivity in β‐Tungsten Films , 1968 .

[14]  Qiang Xu,et al.  Application of Atomic Layer Deposition Tungsten (ALD W) as Gate Filling Metal for 22 nm and Beyond Nodes CMOS Technology , 2014 .

[15]  S. George,et al.  Nucleation and growth during tungsten atomic layer deposition on SiO2 surfaces , 2001 .

[16]  Steven M. George,et al.  Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction , 2000 .

[17]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[18]  P. Griffin,et al.  Silicon VLSI Technology: Fundamentals, Practice, and Modeling , 2020 .

[19]  T. T. Sheng,et al.  Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering , 1973 .

[20]  F. Wooten,et al.  Optical Properties of Solids , 1972 .

[21]  A. Ignatiev,et al.  Direct-current-magnetron deposition of molybdenum and tungsten with rf-substrate bias , 1984 .

[22]  G. Xiao,et al.  Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect , 2015 .

[23]  Yiping Zhao,et al.  Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films , 2001 .

[24]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[25]  R. Wolters,et al.  Atomic Layer Deposition of W1.5N Barrier Films for Cu Metallization: Process and Characterization , 2005 .

[26]  R. Wolters,et al.  Hot‐Wire Assisted ALD: A Study Powered by In Situ Spectroscopic Ellipsometry , 2017 .

[27]  R. Wolters,et al.  Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor , 2016 .

[28]  Y. Mai,et al.  Influences of oxygen on the formation and stability of A15 β-W thin films , 2000 .

[29]  S. George,et al.  Kinetics of the WF6 and Si2H6 surface reactions during tungsten atomic layer deposition , 2001 .

[30]  Gerald Earle Jellison,et al.  Optical functions of silicon between 1. 7 and 4. 7 eV at elevated temperatures , 1983 .

[31]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[32]  W. Schubert,et al.  Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds , 1999 .

[33]  Non-ohmic transport behavior in ultra-thin gold films , 2011 .

[34]  Andre Stesmans,et al.  Degradation of the thermal oxide of the Si/SiO2/Al system due to vacuum ultraviolet irradiation , 1995 .

[35]  R. Wolters,et al.  Hot-Wire generated atomic hydrogen and its impact on thermal ALD in TiCl4/NH3 System , 2013 .

[36]  I. Langmuir,et al.  THE DISSOCIATION OF HYDROGEN INTO ATOMS. Part I. Experimental. , 1914 .

[37]  I. Langmuir THE DISSOCIATION OF HYDROGEN INTO ATOMS. [PART II.] CALCULATION OF THE DEGREE OF DISSOCIATION AND THE HEAT OF FORMATION. , 1915 .

[38]  Jurriaan Schmitz,et al.  Conduction and electric field effect in ultra-thin TiN films , 2013 .

[39]  W. Shockley,et al.  Mobile electric charges on insulating oxides with application to oxide covered silicon p-n junctions☆ , 1964 .

[40]  I. Langmuir THE DISSOCIATION OF HYDROGEN INTO ATOMS.1 , 1912 .

[41]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[42]  D. Hess,et al.  Plasma-Enhanced Chemical Vapor Deposition of Beta-Tungsten, a Metastable Phase, , 1984 .

[43]  C. Cabral,et al.  Phase transformation of thin sputter-deposited tungsten films at room temperature , 2002 .

[44]  C. Oldham,et al.  Low‐Temperature Atomic Layer Deposition of Tungsten using Tungsten Hexafluoride and Highly‐diluted Silane in Argon , 2013 .