A linear-time algorithm for the trust region subproblem based on hidden convexity
暂无分享,去创建一个
[1] Nicholas I. M. Gould,et al. Solving the Trust-Region Subproblem using the Lanczos Method , 1999, SIAM J. Optim..
[2] Elad Hazan,et al. A linear-time algorithm for trust region problems , 2014, Math. Program..
[3] Henry Wolkowicz,et al. Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..
[4] Gene H. Golub,et al. Matrix computations , 1983 .
[5] Marc Teboulle,et al. Hidden convexity in some nonconvex quadratically constrained quadratic programming , 1996, Math. Program..
[6] Jorge J. Moré,et al. Computing a Trust Region Step , 1983 .
[7] Shu Wang,et al. Strong duality for generalized trust region subproblem: S-lemma with interval bounds , 2014, Optim. Lett..
[8] Ya-Xiang Yuan,et al. Recent advances in trust region algorithms , 2015, Mathematical Programming.
[9] Henryk Wozniakowski,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..
[10] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .
[11] Nicholas I. M. Gould,et al. Trust Region Methods , 2000, MOS-SIAM Series on Optimization.
[12] Henry Wolkowicz,et al. The generalized trust region subproblem , 2014, Comput. Optim. Appl..
[13] O. E. Flippo,et al. Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid , 1996 .