Heterogeneous Integration for Mid-infrared Silicon Photonics

Heterogeneous integration enables the construction of silicon (Si) photonic systems, which are fully integrated with a range of passive and active elements including lasers and detectors. Numerous advancements in recent years have shown that heterogeneous Si platforms can be extended beyond near-infrared telecommunication wavelengths to the mid-infrared (MIR) (2–20 μm) regime. These wavelengths hold potential for an extensive range of sensing applications and the necessary components for fully integrated heterogeneous MIR Si photonic technologies have now been demonstrated. However, due to the broad wavelength range and the diverse assortment of MIR technologies, the optimal platform for each specific application is unclear. Here, we overview Si photonic waveguide platforms and lasers at the MIR, including quantum cascade lasers on Si. We also discuss progress toward building an integrated multispectral source, which can be constructed by wavelength beam combining the outputs from multiple lasers with arrayed waveguide gratings and duplexing adiabatic couplers.

[1]  John E. Bowers,et al.  8 × 8 × 40 Gbps fully integrated silicon photonic network on chip , 2016 .

[2]  G. Fish,et al.  Widely Tunable Narrow-Linewidth Monolithically Integrated External-Cavity Semiconductor Lasers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Igor Vurgaftman,et al.  Pulsed and CW performance of 7-stage interband cascade lasers. , 2014, Optics express.

[4]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[5]  Milos Nedeljkovic,et al.  Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. , 2015, Optics letters.

[6]  Alexander Spott,et al.  Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. , 2015, Optics express.

[7]  L. Nähle,et al.  Single-mode interband cascade laser sources for mid-infrared spectroscopic applications , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[8]  Manijeh Razeghi,et al.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency , 2007 .

[9]  Yao-Ming Mu,et al.  Interband cascade lasers , 2000, Photonics West - Optoelectronic Materials and Devices.

[10]  Andre Delage,et al.  Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip , 2016, IEEE Photonics Technology Letters.

[11]  John Bowers,et al.  Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. , 2015, Optics letters.

[12]  H. Thacker,et al.  Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. , 2012, Optics express.

[13]  R. Teissier,et al.  High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide. , 2015, Optics express.

[14]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[15]  Yu-Chi Chang,et al.  Low-loss germanium strip waveguides on silicon for the mid-infrared. , 2012, Optics letters.

[16]  Gunther Roelkens,et al.  2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. , 2015, Optics express.

[17]  S. Bank,et al.  Highly Strained Mid-Infrared Type-I Diode Lasers on GaSb , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Rob Ilic,et al.  Silicon waveguides and ring resonators at 5.5 µm , 2010, 7th IEEE International Conference on Group IV Photonics.

[19]  William W. Bewley,et al.  Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon , 2016 .

[20]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[21]  J E Bowers,et al.  Low-loss arrayed waveguide grating at 760 nm. , 2016, Optics letters.

[22]  Richard A. Soref,et al.  Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics , 2016 .

[23]  G Roelkens,et al.  III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range. , 2016, Optics express.

[24]  Gunther Roelkens,et al.  Heterogeneously integrated III–V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region , 2016 .

[25]  G. Mashanovich,et al.  Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm. , 2013, Optics express.

[26]  H.K. Choi,et al.  High-power GaInAsSb-AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 /spl mu/m , 1994, IEEE Photonics Technology Letters.

[27]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[28]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[29]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[30]  Gunther Roelkens,et al.  2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. , 2016, Optics express.

[31]  Guo-Qiang Lo,et al.  1.9 μm hybrid silicon/iii-v semiconductor laser , 2013 .

[32]  J. Bowers,et al.  Hybrid Silicon Laser Technology: A Thermal Perspective , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[34]  F. Capasso,et al.  Quantum cascade laser master oscillator power amplifier with 1.5W output power at T=300K , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[35]  Assia Barkai,et al.  Integrated hybrid silicon triplexer. , 2010, Optics express.

[36]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[37]  Yonggang Zhang,et al.  2.4 µm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature , 2014 .

[38]  A. Khokhar,et al.  Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared. , 2016, Optics letters.

[39]  I Molina-Fernández,et al.  Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. , 2016, Optics express.

[40]  So Edeagu,et al.  MID-INFRARED QUANTUM CASCADE LASERS , 2012 .

[41]  T. Fan Laser beam combining for high-power, high-radiance sources , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Michael L Davenport,et al.  Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. , 2014, Optics express.

[43]  A. Andrejew,et al.  InP-Based Type-II Quantum-Well Lasers and LEDs , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  Yang Liu,et al.  Silicon waveguides and ring resonators at 5.5 µm , 2010 .

[45]  Manijeh Razeghi,et al.  Room temperature quantum cascade lasers with 27% wall plug efficiency , 2011 .

[46]  J. R. Adleman,et al.  Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides , 2014 .

[47]  Jerry R. Meyer,et al.  Semiconductor optical amplifiers at 2.0‐µm wavelength on silicon , 2017 .

[48]  Sasan Fathpour,et al.  Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics , 2013 .

[49]  M. Amann,et al.  3.6 μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature , 2011 .

[50]  John E. Bowers,et al.  Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[52]  Gunther Roelkens,et al.  Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  David Chapman,et al.  High-Quality 150 mm InP-to-Silicon Epitaxial Transfer for Silicon Photonic Integrated Circuits , 2009 .

[54]  Manijeh Razeghi,et al.  High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼4.8μm , 2005 .

[55]  Stephen Kozacik,et al.  Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. , 2013, Optics letters.

[56]  R. Loo,et al.  Germanium-on-Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers , 2013, IEEE Photonics Technology Letters.

[57]  William W. Bewley,et al.  Quantum cascade laser on silicon , 2016 .