An asymptotic preserving scheme for the relativistic Vlasov-Maxwell equations in the classical limit
暂无分享,去创建一个
[1] Lukas Einkemmer,et al. Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov-Poisson Equations , 2012, SIAM J. Numer. Anal..
[2] F. Pegoraro,et al. Nonlinear kinetic development of the Weibel instability and the generation of electrostatic coherent structures , 2009, 1008.2336.
[3] Nicolas Crouseilles,et al. High-order Hamiltonian splitting for the Vlasov–Poisson equations , 2015, Numerische Mathematik.
[4] F. Pegoraro,et al. Kinetic saturation of the Weibel instability in a collisionless plasma , 1998 .
[5] John V. Shebalin,et al. A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations , 2003 .
[6] Vladimir Tikhonchuk,et al. High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications , 2008, J. Comput. Phys..
[7] Jerrold E. Marsden,et al. The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .
[8] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[9] Lorenzo Pareschi,et al. Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.
[10] T. D. Arber,et al. VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..
[11] K. Bowers,et al. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .
[12] Bengt Eliasson,et al. Outflow boundary conditions for the Fourier transformed two-dimensional Vlasov equation , 2002 .
[13] Luis Chacón,et al. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..
[14] Akihiro Suzuki,et al. A conservative scheme for the relativistic Vlasov-Maxwell system , 2009, J. Comput. Phys..
[15] Eric Esarey,et al. Overview of plasma-based accelerator concepts , 1996 .
[16] Fernando Casas,et al. Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.
[17] G. Manfredi. Non-relativistic limits of Maxwell’s equations , 2013, 1303.5608.
[18] Giovanni Manfredi,et al. Long-Time Behavior of Nonlinear Landau Damping , 1997 .
[19] Eric Sonnendrücker,et al. Charge-conserving grid based methods for the Vlasov–Maxwell equations , 2014 .
[20] M. Drouin,et al. Particle-in-cell modeling of relativistic laser-plasma interaction with the adjustable-damping, direct implicit method , 2010, J. Comput. Phys..
[21] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[22] A. Bruce Langdon,et al. On enforcing Gauss' law in electromagnetic particle-in-cell codes , 1992 .
[23] A second-order L-stable time discretisation of the semiconductor device equations , 1992 .
[24] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[25] Pierre Bertrand,et al. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system , 2008, J. Comput. Phys..
[26] Francis Filbet,et al. Numerical approximation of collisional plasmas by high order methods , 2004 .
[27] M. Bostan. Asymptotic behavior of weak solutions for the relativistic Vlasov–Maxwell equations with large light speed , 2006 .
[28] A. Klimas,et al. A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .
[29] Nicolas Crouseilles,et al. A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations , 2011 .
[30] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[31] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[32] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[33] H. Neunzert,et al. Local existence of solutions of the vlasov‐maxwell equations and convergence to the vlasov‐poisson equations for infinite light velocity , 1986 .
[34] Alexander Ostermann,et al. A strategy to suppress recurrence in grid-based Vlasov solvers , 2014 .
[35] P. Messmer,et al. Apar-T: code, validation, and physical interpretation of particle-in-cell results , 2013, 1308.5892.
[36] Erwan Faou,et al. Geometric Numerical Integration and Schrodinger Equations , 2012 .
[37] Nicolas Crouseilles,et al. Hamiltonian splitting for the Vlasov-Maxwell equations , 2014, J. Comput. Phys..
[38] Stefano Markidis,et al. The energy conserving particle-in-cell method , 2011, J. Comput. Phys..
[39] Yingda Cheng,et al. Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..
[40] P. Morrison,et al. The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .
[41] Hong Qin,et al. Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations" , 2015, J. Comput. Phys..
[42] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[43] E. Fijalkow,et al. A numerical solution to the Vlasov equation , 1999 .
[44] Yingda Cheng,et al. Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..
[45] Zhiwei Ma,et al. The plasma wave echo revisited , 2011 .
[46] C. Cavazzoni,et al. A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .
[47] P. J. Morrison,et al. A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..
[48] Jack Schaeffer. The classical limit of the relativistic Vlasov-Maxwell system , 1986 .
[49] S. Ukai,et al. On the Vlasov-Poisson Limit of the Vlasov-Maxwell Equation , 1985 .
[51] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .