An asymptotic preserving scheme for the relativistic Vlasov-Maxwell equations in the classical limit

Abstract We consider the relativistic Vlasov–Maxwell (RVM) equations in the limit when the light velocity c goes to infinity. In this regime, the RVM system converges towards the Vlasov–Poisson system and the aim of this paper is to construct asymptotic preserving numerical schemes that are robust with respect to this limit. Our approach relies on a time splitting approach for the RVM system employing an implicit time integrator for Maxwell’s equations in order to damp the higher and higher frequencies present in the numerical solution. A number of numerical simulations are conducted in order to investigate the performances of our numerical scheme both in the relativistic as well as in the classical limit regime. In addition, we derive the dispersion relation of the Weibel instability for the continuous and the discretized problem.

[1]  Lukas Einkemmer,et al.  Convergence Analysis of a Discontinuous Galerkin/Strang Splitting Approximation for the Vlasov-Poisson Equations , 2012, SIAM J. Numer. Anal..

[2]  F. Pegoraro,et al.  Nonlinear kinetic development of the Weibel instability and the generation of electrostatic coherent structures , 2009, 1008.2336.

[3]  Nicolas Crouseilles,et al.  High-order Hamiltonian splitting for the Vlasov–Poisson equations , 2015, Numerische Mathematik.

[4]  F. Pegoraro,et al.  Kinetic saturation of the Weibel instability in a collisionless plasma , 1998 .

[5]  John V. Shebalin,et al.  A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations , 2003 .

[6]  Vladimir Tikhonchuk,et al.  High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications , 2008, J. Comput. Phys..

[7]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[8]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[9]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[10]  T. D. Arber,et al.  VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..

[11]  K. Bowers,et al.  Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .

[12]  Bengt Eliasson,et al.  Outflow boundary conditions for the Fourier transformed two-dimensional Vlasov equation , 2002 .

[13]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[14]  Akihiro Suzuki,et al.  A conservative scheme for the relativistic Vlasov-Maxwell system , 2009, J. Comput. Phys..

[15]  Eric Esarey,et al.  Overview of plasma-based accelerator concepts , 1996 .

[16]  Fernando Casas,et al.  Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.

[17]  G. Manfredi Non-relativistic limits of Maxwell’s equations , 2013, 1303.5608.

[18]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[19]  Eric Sonnendrücker,et al.  Charge-conserving grid based methods for the Vlasov–Maxwell equations , 2014 .

[20]  M. Drouin,et al.  Particle-in-cell modeling of relativistic laser-plasma interaction with the adjustable-damping, direct implicit method , 2010, J. Comput. Phys..

[21]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[22]  A. Bruce Langdon,et al.  On enforcing Gauss' law in electromagnetic particle-in-cell codes , 1992 .

[23]  A second-order L-stable time discretisation of the semiconductor device equations , 1992 .

[24]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[25]  Pierre Bertrand,et al.  A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system , 2008, J. Comput. Phys..

[26]  Francis Filbet,et al.  Numerical approximation of collisional plasmas by high order methods , 2004 .

[27]  M. Bostan Asymptotic behavior of weak solutions for the relativistic Vlasov–Maxwell equations with large light speed , 2006 .

[28]  A. Klimas,et al.  A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .

[29]  Nicolas Crouseilles,et al.  A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations , 2011 .

[30]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[31]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[33]  H. Neunzert,et al.  Local existence of solutions of the vlasov‐maxwell equations and convergence to the vlasov‐poisson equations for infinite light velocity , 1986 .

[34]  Alexander Ostermann,et al.  A strategy to suppress recurrence in grid-based Vlasov solvers , 2014 .

[35]  P. Messmer,et al.  Apar-T: code, validation, and physical interpretation of particle-in-cell results , 2013, 1308.5892.

[36]  Erwan Faou,et al.  Geometric Numerical Integration and Schrodinger Equations , 2012 .

[37]  Nicolas Crouseilles,et al.  Hamiltonian splitting for the Vlasov-Maxwell equations , 2014, J. Comput. Phys..

[38]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[39]  Yingda Cheng,et al.  Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..

[40]  P. Morrison,et al.  The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .

[41]  Hong Qin,et al.  Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations" , 2015, J. Comput. Phys..

[42]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[43]  E. Fijalkow,et al.  A numerical solution to the Vlasov equation , 1999 .

[44]  Yingda Cheng,et al.  Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..

[45]  Zhiwei Ma,et al.  The plasma wave echo revisited , 2011 .

[46]  C. Cavazzoni,et al.  A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .

[47]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[48]  Jack Schaeffer The classical limit of the relativistic Vlasov-Maxwell system , 1986 .

[49]  S. Ukai,et al.  On the Vlasov-Poisson Limit of the Vlasov-Maxwell Equation , 1985 .

[51]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .