A Total Variation Motion Adaptive Deinterlacing Scheme
暂无分享,去创建一个
[1] Erwin B. Bellers,et al. De-Interlacing: A Key Technology for Scan Rate Conversion , 2000 .
[2] Giovanni Ramponi,et al. FPGA architecture for a videowall image processor , 2001, IS&T/SPIE Electronic Imaging.
[3] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[4] Pierre Kornprobst,et al. Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.
[5] Graham Thomas. A comparison of motion-compensated interlace-to-progressive conversion methods , 1998, Signal Process. Image Commun..
[6] Giovanni Ramponi,et al. Image sequence processing for videowall visualization , 2000, Electronic Imaging.
[7] Jelena Kovacevic,et al. Deinterlacing by successive approximation , 1997, IEEE Trans. Image Process..
[8] Yao Wang,et al. Video Processing and Communications , 2001 .
[9] David Mumford,et al. Bayesian Rationale for the Variational Formulation , 1994, Geometry-Driven Diffusion in Computer Vision.
[10] J. Craggs. Applied Mathematical Sciences , 1973 .
[11] Laurent Chanas. Méthodes variationnelles pour la restauration de séquences d'images dégradées : application aux images infrarouges éblouies par le laser , 2001 .
[12] Bart M. ter Haar Romeny,et al. Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.
[13] G. Aubert,et al. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .
[14] A. Murat Tekalp,et al. Digital Video Processing , 1995 .
[15] Tony F. Chan,et al. Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..