Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches

The storage of photovoltaic energy by supercapacitors is studied by using two approaches. An overview on the integration of supercapacitors in solar energy conversion systems is previously provided. First, a realized experimental setup of charge/discharge of supercapacitors fed by a photovoltaic array has been operated with fine data acquisition. The second approach consists in simulating photovoltaic energy storage by supercapacitors with a faithful and accessible model composed of solar irradiance evaluation, equivalent electrical circuit for photovoltaic conversion, and a multibranch circuit for supercapacitor. Both the experimental and calculated results are confronted, and an error of 1% on the stored energy is found with a correction largely within % of the transmission line capacitance according to temperature.

[1]  Mohamed Ansoumane Camara Modélisation du stockage de l’énergie photovoltaïque par supercondensateurs , 2011 .

[2]  Di Lu,et al.  Application of Petri nets for the energy management of a photovoltaic based power station including storage units , 2010 .

[3]  Björn Andersson,et al.  Comparison of Simulation Programs for Supercapacitor Modelling , 2008 .

[4]  Abhiman Hande,et al.  Indoor solar energy harvesting for sensor network router nodes , 2007, Microprocess. Microsystems.

[5]  Hamid Gualous,et al.  Frequency, thermal and voltage supercapacitor characterization and modeling , 2007 .

[6]  Nassim Rizoug,et al.  Modélisation électrique et énergétique des supercondensateurs et méthodes de caractérisation : application au cyclage d'un module de supercondensateurs basse tension en grande puissance , 2006 .

[7]  Pehr Björnbom,et al.  Charge/discharge of an electrochemical supercapacitor electrode pore; non-uniqueness of mathematical models , 2007 .

[8]  Masaru Miyayama,et al.  Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes , 2002 .

[9]  Mehmet Uzunoglu,et al.  Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications , 2009 .

[10]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[11]  L.J. Borle,et al.  A power system combining batteries and supercapacitors in a solar/hydrogen hybrid electric vehicle , 2005, 2005 IEEE Vehicle Power and Propulsion Conference.

[12]  Syamal K. Sen,et al.  How modeling can attract experimentalists to improve solar cell's efficiency: Divide-and-conquer approach , 2009 .

[13]  Nand Kishor,et al.  Proportional–integral controller based small-signal analysis of hybrid distributed generation systems , 2011 .

[14]  Roland J.-M. Pellenq,et al.  Realistic molecular models for saccharose-based carbons , 2002 .

[15]  Luca Benini,et al.  Comparison of energy intake prediction algorithms for systems powered by photovoltaic harvesters , 2010, Microelectron. J..

[16]  Marcelo Gradella Villalva,et al.  Modeling and circuit-based simulation of photovoltaic arrays , 2009, 2009 Brazilian Power Electronics Conference.

[17]  Pierre-Louis Taberna,et al.  Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte , 2005 .

[18]  Hamid Gualous,et al.  Experimental study of supercapacitor serial resistance and capacitance variations with temperature , 2003 .

[19]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[20]  Farid Belhachemi Modélisation et caractérisation des supercondensateurs à couche double électrique utilisés en électronique de puissance , 2001 .

[21]  R. Bonert,et al.  Characterization of double-layer capacitors (DLCs) for power electronics applications , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[22]  S. Rael,et al.  A physical based model of power electric double-layer supercapacitors , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[23]  Laurent Servant,et al.  Supercapacitor using a proton conducting polymer electrolyte , 1995 .

[24]  Fritz Stoeckli,et al.  The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons , 2006 .

[25]  Christian Steger,et al.  Simulation Based Verification of Energy Storage Architectures for Higher Class Tags supported by Energy Harvesting Devices , 2007, 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007).

[26]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[27]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[28]  A. Miraoui,et al.  Alimentation par biberonnage solaire photovoltaïque d'une chaîne de motorisation électrique , 2006 .

[29]  Phatiphat Thounthong,et al.  Energy management of fuel cell/solar cell/supercapacitor hybrid power source , 2011 .

[30]  Fabio Mottola,et al.  Design of ultracapacitor based filter for isolated PV source feeding pulsing load , 2008 .

[31]  John Ringwood,et al.  A computational tool for evaluating the economics of solar and wind microgeneration of electricity , 2009 .

[32]  Ibrahim Abu Talib,et al.  Growth of platinum nanoparticles on stainless steel 316L current collectors to improve carbon-based supercapacitor performance , 2011 .