DNA supercoiling — a global transcriptional regulator for enterobacterial growth?

A fundamental principle of exponential bacterial growth is that no more ribosomes are produced than are necessary to support the balance between nutrient availability and protein synthesis. Although this conclusion was first expressed more than 40 years ago, a full understanding of the molecular mechanisms involved remains elusive and the issue is still controversial. There is currently agreement that, although many different systems are undoubtedly involved in fine-tuning this balance, an important control, and in our opinion perhaps the main control, is regulation of the rate of transcription initiation of the stable (ribosomal and transfer) RNA transcriptons. In this review, we argue that regulation of DNA supercoiling provides a coherent explanation for the main modes of transcriptional control — stringent control, growth-rate control and growth-phase control — during the normal growth of Escherichia coli.

[1]  H. Bremer,et al.  rpoB mutation in Escherichia coli alters control of ribosome synthesis by guanosine tetraphosphate , 1983, Journal of bacteriology.

[2]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[3]  J. Gallant,et al.  Two Compounds implicated in the Function of the RC Gene of Escherichia coli , 1969, Nature.

[4]  M. Buckle,et al.  The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes. , 2000, Journal of molecular biology.

[5]  Akira Ishihama,et al.  Transcriptional Organization and In Vivo Role of theEscherichia coli rsd Gene, Encoding the Regulator of RNA Polymerase Sigma D , 1999, Journal of bacteriology.

[6]  C. Wu,et al.  Studies of nucleotide binding to the ribonucleic acid polymerase by a fluoresence technique. , 1969, Biochemistry.

[7]  Mark S. Thomas,et al.  Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. , 2002, Journal of molecular biology.

[8]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. XII. DNA Topology as a Key Target of Selection , 2005, Genetics.

[9]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. , 2001, Journal of molecular biology.

[10]  R. Gourse,et al.  NTP-sensing by rRNA promoters in Escherichia coli is direct , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[12]  A. Conter,et al.  Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. , 1997, Journal of molecular biology.

[13]  C. Gualerzi,et al.  Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature‐dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H‐NS , 1998, The EMBO journal.

[14]  K. Drlica,et al.  Cross-talk between topoisomerase I and HU in Escherichia coli. , 1996, Journal of molecular biology.

[15]  C. Dorman,et al.  Regulation of gene expression by histone-like proteins in bacteria. , 2003, Current opinion in genetics & development.

[16]  M. Dreyfus,et al.  The Histone-Like Protein HU Does Not Obstruct Movement of T7 RNA Polymerase in Escherichia coli Cells but Stimulates Its Activity , 2002, Journal of bacteriology.

[17]  Dmitry Pokholok,et al.  Multiple Mechanisms Are Used for Growth Rate and Stringent Control of leuV Transcriptional Initiation inEscherichia coli , 1999, Journal of bacteriology.

[18]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[19]  C. Higgins,et al.  DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression , 1988, Journal of bacteriology.

[20]  C. Dorman H-NS: a universal regulator for a dynamic genome , 2004, Nature Reviews Microbiology.

[21]  H. Buc,et al.  Correlation between the conformation of Escherichia coli −10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. , 1988, The EMBO journal.

[22]  G. W. Hatfield,et al.  DNA topology-mediated control of global gene expression in Escherichia coli. , 2002, Annual review of genetics.

[23]  Javier Arsuaga,et al.  Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli , 2004, Genome Biology.

[24]  François Képès,et al.  Periodic transcriptional organization of the E.coli genome. , 2004, Journal of molecular biology.

[25]  C. Gualerzi,et al.  Antagonistic involvement of FIS and H‐NS proteins in the transcriptional control of hns expression , 1996, Molecular microbiology.

[26]  M. Buckle,et al.  FIS activates sequential steps during transcription initiation at a stable RNA promoter , 1997, The EMBO journal.

[27]  H. Xiao,et al.  The omega subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo , 1991, Journal of bacteriology.

[28]  Malcolm Buckle,et al.  A molecular mechanism for the repression of transcription by the H‐NS protein , 2001, Molecular microbiology.

[29]  D. Galas,et al.  Interaction of Fis protein with DNA: bending and specificity of binding. , 1994, Biochimie.

[30]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[31]  R. Gourse,et al.  Changes in Escherichia coli rRNA Promoter Activity Correlate with Changes in Initiating Nucleoside Triphosphate and Guanosine 5′ Diphosphate 3′-Diphosphate Concentrations after Induction of Feedback Control of Ribosome Synthesis , 2003, Journal of bacteriology.

[32]  Ian R. Booth,et al.  A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli , 1988, Cell.

[33]  R Kahmann,et al.  Regulation of crp transcription by oscillation between distinct nucleoprotein complexes , 1998, The EMBO journal.

[34]  R. Gourse,et al.  DNA determinants of rRNA synthesis in E. coli: Growth rate dependent regulation, feedback inhibition, upstream activation, antitermination , 1986, Cell.

[35]  J. Gralla,et al.  All three elements of the lac ps promoter mediate its transcriptional response to DNA supercoiling. , 1987, Journal of molecular biology.

[36]  A. Travers,et al.  Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence , 2004, Molecular microbiology.

[37]  D. Jin,et al.  The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like "stringent" RNA polymerases in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[39]  M. Zacharias,et al.  Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2‐ and tac promoter on growth‐rate control and stringent sensitivity. , 1989, The EMBO journal.

[40]  John W. Foster,et al.  DksA A Critical Component of the Transcription Initiation Machinery that Potentiates the Regulation of rRNA Promoters by ppGpp and the Initiating NTP , 2004, Cell.

[41]  R. Hengge-aronis,et al.  Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli , 1995, Journal of bacteriology.

[42]  R. Wagner,et al.  Guanosine 3',5'-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. , 1997, European journal of biochemistry.

[43]  S. Altuvia,et al.  Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, Topoisomerase I and Fis , 2000, Molecular microbiology.

[44]  A. Lamond,et al.  Requirement for an upstream element for optimal transcription of a bacterial tRNA gene , 1983, Nature.

[45]  M. Hecker,et al.  Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis , 2002, Journal of bacteriology.

[46]  D. Lilley,et al.  Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Sulavik,et al.  Resistance to Tuberculosis: Experimental Studies in Native and Acquired Defensive Mechanisms , 1966, The Yale Journal of Biology and Medicine.

[48]  A. Travers,et al.  CRP Modulates fis Transcription by Alternate Formation of Activating and Repressing Nucleoprotein Complexes* , 2001, The Journal of Biological Chemistry.

[49]  A. V. Ooyen,et al.  The mechanism of action of ppGpp on rRNA synthesis in vitro , 1976, Cell.

[50]  O. Maaløe,et al.  Control of macromolecular synthesis : a study of DNA, RNA, and protein synthesis in bacteria , 1966 .

[51]  J. Calvo,et al.  Lrp, a major regulatory protein in Escherichia coli, bends DNA and can organize the assembly of a higher‐order nucleoprotein structure. , 1993, The EMBO journal.

[52]  M. Jacquet,et al.  The kinetics of sigma subunit directed promoter recognition by E. coli RNA polymerase. , 1999, Journal of molecular biology.

[53]  A. Travers,et al.  DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. , 1998, Journal of molecular biology.

[54]  A. Travers,et al.  FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. , 1995, The EMBO journal.

[55]  A. K. Solomon,et al.  CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE. , 1963 .

[56]  R. Gourse,et al.  Regulation of the synthesis of ribosomes and ribosomal components. , 1984, Annual review of biochemistry.

[57]  Arkady B Khodursky,et al.  Spatial patterns of transcriptional activity in the chromosome of Escherichia coli , 2004, Genome Biology.

[58]  J. Hamming,et al.  E coli RNA polymerase-rRNA promoter interaction and the effect of ppGpp. , 1980, Nucleic acids research.

[59]  C. Turnbough,et al.  Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. , 1997, Science.

[60]  L. M. Albright,et al.  Topoisomerization of plasmid DNA in Escherichia coli infected with bacteriophage T4. , 1986, Journal of molecular biology.

[61]  M. Cashel,et al.  Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp , 1993, Journal of bacteriology.

[62]  H. Bremer,et al.  Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate , 1982, Journal of bacteriology.

[63]  D. Lilley,et al.  Modulation of tyrT promoter activity by template supercoiling in vivo. , 1994, The EMBO journal.

[64]  J. Lebowitz,et al.  Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions , 1987, Journal of bacteriology.

[65]  J. Gralla,et al.  Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter , 1992, Molecular microbiology.

[66]  M. Buckle,et al.  FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. , 2002, Journal of molecular biology.

[67]  R. Ebright,et al.  Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. W. Hatfield,et al.  Activation of transcription initiation from a stable RNA promoter by a Fis protein‐mediated DNA structural transmission mechanism , 2004, Molecular microbiology.

[69]  T. Elliott,et al.  Role of ppGpp in rpoS Stationary-Phase Regulation in Escherichia coli , 2002, Journal of bacteriology.

[70]  E. Le Cam,et al.  Contribution of DNA Conformation and Topology in Right-handed DNA Wrapping by the Bacillus subtilis LrpC Protein* , 2003, The Journal of Biological Chemistry.

[71]  R. Gourse,et al.  Relationship between Growth Rate and ATP Concentration in Escherichia coli , 2004, Journal of Biological Chemistry.

[72]  A. Travers,et al.  An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. , 2001, Nucleic acids research.

[73]  R. Ebright,et al.  Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  T. Nyström,et al.  Regulation of sigma factor competition by the alarmone ppGpp. , 2002, Genes & development.

[75]  Daniel Gentry,et al.  DksA Affects ppGpp Induction of RpoS at a Translational Level , 2002, Journal of bacteriology.

[76]  H. Drew,et al.  Negative supercoiling induces spontaneous unwinding of a bacterial promoter. , 1985, The EMBO journal.

[77]  N. Fujita,et al.  Promoter selectivity of Escherichia coli RNA polymerase: omega factor is responsible for the ppGpp sensitivity. , 1989, Nucleic acids research.

[78]  A. Travers,et al.  The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. , 1993, The EMBO journal.

[79]  C. Bustamante,et al.  Wrapping of DNA around the E.coli RNA polymerase open promoter complex , 1999, The EMBO journal.

[80]  A. Lamond Supercoiling response of a bacterial tRNA gene. , 1985, The EMBO journal.

[81]  A. Lamond,et al.  Alteration of the growth-rate-dependent regulation of Escherichia coli tyrT expression by promoter mutations. , 1986, Journal of molecular biology.

[82]  L. Sun,et al.  Regulation of the Escherichia coli nrd operon: role of DNA supercoiling , 1994, Journal of bacteriology.

[83]  A. Travers,et al.  Promoter Sequence for Stringent Control of Bacterial Ribonucleic Acid Synthesis , 1980, Journal of bacteriology.

[84]  J. Wang,et al.  Angular alteration of the DNA helix by E. coli RNA polymerase. , 1972, Nature: New biology.

[85]  L. Bosch,et al.  FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions , 1992, Journal of bacteriology.

[86]  G. Dougan,et al.  DNA topology and adaptation of Salmonella typhimurium to an intracellular environment. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[87]  N. Acheson Transcription during productive infection with polyoma virus and simian virus 40 , 1976, Cell.

[88]  K. Ozato,et al.  Phosphorylation of histone H3 is functionally linked to retinoic acid receptor β promoter activation , 2002, EMBO reports.

[89]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[90]  E. Borek,et al.  NUCLEIC ACID METABOLISM IN RELATION TO THE LYSOGENIC PHENOMENON , 1955, Journal of bacteriology.

[91]  S. Mirkin,et al.  Transcriptionally driven cruciform formation in vivo. , 1992, Nucleic acids research.

[92]  H. Westerhoff,et al.  Energy buffering of DNA structure fails when Escherichia coli runs out of substrate , 1995, Journal of bacteriology.

[93]  D. Pulleyblank,et al.  Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. , 1985, Nucleic acids research.

[94]  Reid C. Johnson,et al.  Fis Stabilizes the Interaction between RNA Polymerase and the Ribosomal Promoter rrnB P1, Leading to Transcriptional Activation* , 2003, Journal of Biological Chemistry.

[95]  Mark Rochman,et al.  Promoter protection by a transcription factor acting as a local topological homeostat , 2002, EMBO reports.

[96]  R. Gourse Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. , 1988, Nucleic acids research.

[97]  H. Buc,et al.  Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli. , 1987, Journal of molecular biology.

[98]  R. Sinden,et al.  Torsional tension in intracellular bacteriophage T4 DNA. Evidence that a linear DNA duplex can be supercoiled in vivo. , 1982, Journal of molecular biology.

[99]  Kevin Gaston,et al.  Stringent spacing requirements for transcription activation by CRP , 1990, Cell.

[100]  A. Ishihama,et al.  Involvement of ppGpp, ribosome modulation factor, and stationary phase-specific sigma factor sigma(S) in the decrease in cell viability caused by spermidine. , 1999, Biochemical and biophysical research communications.

[101]  S. Yokoyama,et al.  Structural Basis for Transcription Regulation by Alarmone ppGpp , 2004, Cell.

[102]  Y. Tse‐Dinh,et al.  RNase HI overproduction is required for efficient full‐length RNA synthesis in the absence of topoisomerase I in Escherichia coli , 2004, Molecular microbiology.

[103]  R. Gourse,et al.  Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[104]  A. Lamond,et al.  Genetically separable functional elements mediate the optimal expression and stringent regulation of a bacterial tRNA gene , 1985, Cell.

[105]  R. Gourse,et al.  Guanosine 3'-diphosphate 5'-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[106]  G. Stent,et al.  A genetic locus for the regulation of ribonucleic acid synthesis. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[107]  N. Fujita,et al.  Promoter selectivity of Escherichia coli RNA polymerase E sigma 70 and E sigma 38 holoenzymes. Effect of DNA supercoiling. , 1996, The Journal of biological chemistry.

[108]  A. Travers Modulation of RNA polymerase specificity by ppGpp , 1976, Molecular and General Genetics MGG.

[109]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[110]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[111]  H. Aiba,et al.  Molecular mechanism of negative autoregulation of Escherichia coli crp gene. , 1991, Nucleic acids research.

[112]  A. Tkachenko,et al.  Polyamines as Modulators of Gene Expression under Oxidative Stress in Escherichia coli , 2003, Biochemistry (Moscow).

[113]  ULRICH SIEBENLIST,et al.  RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter , 1979, Nature.

[114]  B. Uhlin,et al.  Nucleoid Proteins Stimulate Stringently Controlled Bacterial Promoters A Link between the cAMP-CRP and the (p)ppGpp Regulons in Escherichia coli , 2000, Cell.

[115]  JAMES C. Wang,et al.  DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli: effects of DNA bends. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[116]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[117]  Malcolm Buckle,et al.  Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. , 2003, Journal of molecular biology.

[118]  S. Artz,et al.  Mutations that render the promoter of the histidine operon of Salmonella typhimurium insensitive to nutrient-rich medium repression and amino acid downshift , 1997, Journal of bacteriology.

[119]  R. Gourse,et al.  Regulation of rRNA Transcription Is Remarkably Robust: FIS Compensates for Altered Nucleoside Triphosphate Sensing by Mutant RNA Polymerases at Escherichia coli rrn P1 Promoters , 2000, Journal of bacteriology.

[120]  J. Gallant,et al.  On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. , 1971, The Journal of biological chemistry.

[121]  R. Stein,et al.  Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[122]  S. Adhya,et al.  Effect of varying the supercoiling of DNA on transcription and its regulation. , 2003, Biochemistry.

[123]  O. Maaløe,et al.  The transition between different physiological states during balanced growth of Salmonella typhimurium. , 1958, Journal of general microbiology.

[124]  S. Busby,et al.  The regulation of bacterial transcription initiation , 2004, Nature Reviews Microbiology.

[125]  R. Hengge-aronis The Role of rpoS in Early Stationary-Phase Gene Regulation in Escherichia coli K12 , 1993 .

[126]  Shigeyuki Yokoyama,et al.  Regulation through the Secondary Channel—Structural Framework for ppGpp-DksA Synergism during Transcription , 2004, Cell.

[127]  S. Rimsky Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. , 2004, Current opinion in microbiology.

[128]  D. E. Atkinson,et al.  Adenylate Energy Charge in Escherichia coli During Growth and Starvation , 1971, Journal of bacteriology.

[129]  J. Martín,et al.  Gene Targeting in Penicillium chrysogenum: Disruption of the lys2 Gene Leads to Penicillin Overproduction , 1999, Journal of bacteriology.

[130]  K. von Meyenburg,et al.  Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli. , 1975, The Journal of biological chemistry.

[131]  H. Westerhoff,et al.  Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. , 1999, European journal of biochemistry.

[132]  L. Claret,et al.  Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. , 1997, Journal of molecular biology.

[133]  S. Mirkin,et al.  DNA Supercoiling and transcription in Escherichia coli: Influence of RNA polymerase mutations , 2004, Molecular and General Genetics MGG.

[134]  R. C. Johnson,et al.  The Fis protein: it's not just for DNA inversion anymore , 1992, Molecular microbiology.

[135]  R. Gourse,et al.  Control of rRNA expression by small molecules is dynamic and nonredundant. , 2003, Molecular cell.

[136]  L. Claret,et al.  Regulation of HUα and HUβ by CRP and FIS inEscherichia coli , 1996 .

[137]  L. Møller,et al.  Invariance of the Nucleoside Triphosphate Pools ofEscherichia coli with Growth Rate* , 2000, The Journal of Biological Chemistry.

[138]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[139]  A. Kolb,et al.  DNA supercoiling contributes to disconnect σS accumulation from σS‐dependent transcription in Escherichia coli , 2003 .

[140]  R. Hengge-aronis,et al.  Survival of hunger and stress: The role of rpoS in early stationary phase gene regulation in E. coli , 1993, Cell.

[141]  F. Baquero,et al.  Cyclic AMP receptor protein positively controls gyrA transcription and alters DNA topology after nutritional upshift in Escherichia coli , 1996, Journal of bacteriology.

[142]  M. Leng,et al.  The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control , 1998, The EMBO journal.

[143]  A. Travers,et al.  The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA , 2000, Molecular microbiology.

[144]  M. Cashel Inhibition of RNA Polymerase by ppGpp, a Nucleotide Accumulated during the Stringent Response to Amino Acid Starvation in E. coli , 1970 .

[145]  Ying Zhang,et al.  Flexible DNA bending in HU–DNA cocrystal structures , 2003, The EMBO journal.

[146]  P. Datta,et al.  Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12 , 1995, Molecular and General Genetics MGG.

[147]  J. Gralla,et al.  Activation of the lac promoter and its variants. Synergistic effects of catabolite activator protein and supercoiling in vitro. , 1989, Journal of molecular biology.

[148]  A. Ishihama,et al.  Genetic studies on the β subunit of Escherichia coli RNA polymerase , 1986, Molecular and General Genetics MGG.

[149]  R. Wagner,et al.  Essential Steps in the ppGpp-dependent Regulation of Bacterial Ribosomal RNA Promoters Can Be Explained by Substrate Competition* , 2003, The Journal of Biological Chemistry.

[150]  C. Dorman,et al.  Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function , 1994, Molecular microbiology.