Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus

[1]  M. Gualtieri,et al.  The transformation sequence of cement-asbestos slates up to 1200 degrees C and safe recycling of the reaction product in stoneware tile mixtures. , 2008, Journal of hazardous materials.

[2]  Giovanni Valdrè,et al.  Mineralogical and chemical characterization of Joule heated soil contaminated by ceramics industry sludge with high Pb contents , 2007 .

[3]  E. Belluso,et al.  Kinetics of the Decomposition of Crocidolite Asbestos: A Preliminary Real-Time X-Ray Powder Diffraction Study , 2004 .

[4]  C. Nucci,et al.  A research on plants for in-situ vitrification of contaminated soils , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[5]  A. Cattaneo,et al.  Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD , 2003 .

[6]  Jong Heo,et al.  Vitrification of fly ash from municipal solid waste incinerator. , 2002, Journal of hazardous materials.

[7]  A. Gualtieri,et al.  Thermal decomposition of asbestos and recycling in traditional ceramics , 2000 .

[8]  G. Valdrè,et al.  Importance of microanalysis in understanding mechanism of transformation in active glassy biomaterials. , 1996, Journal of biomedical materials research.

[9]  P. de Caritat,et al.  Compositional trends of a Cretaceous foreland basin shale (Belle Fourche Formation, Western Canada Sedimentary Basin): diagenetic and depositional controls , 1994, Clay Minerals.

[10]  K. MacKenzie,et al.  A glass-bonded ceramic material from chrysotile (white asbestos) , 1994, Journal of Materials Science.

[11]  V. Alexiades,et al.  Constraints on mass balance of soil moisture during in situ vitrification , 1994 .

[12]  K. MacKenzie,et al.  Thermal reactions of chrysotile revisited; a 29 Si and 25 Mg MAS NMR study , 1994 .

[13]  M. T. Naney,et al.  Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL , 1992 .

[14]  L. Thompson,et al.  Technology status report: In situ vitrification applied to buried wastes , 1992 .

[15]  G. Valdrè Defects in glasses examined by backscattered electron imaging and by x‐ray wavelength and energy dispersive spectroscopy , 1992 .

[16]  W. Kuhn Steady-state analysis of the fate of volatile contaminants during In situ Vitrification , 1992 .

[17]  K. H. Oma,et al.  Crucible melts and bench-scale ISV (in situ vitrification) tests on simulated wastes in INEL (Idaho National Engineering Laboratory) soils , 1990 .

[18]  C. H. Kindle,et al.  MODELING OF THE IN SITU VITRIFICATION PROCESS , 1990 .

[19]  D. Roberts,et al.  The Vitrifix process , 1989 .

[20]  J. Westsik,et al.  In situ vitrification: Test results for a contaminated soil melting process , 1989 .

[21]  M. J. Plodinec,et al.  Assessment of Savannah River borosilicate glass in the repository environment , 1982 .

[22]  C. J. Martin The thermal decomposition of chrysotile , 1977, Mineralogical Magazine.

[23]  M. Franzini,et al.  A simple method to evaluate the matrix effects in X-Ray fluorescence analysis , 1972 .

[24]  A. Downey,et al.  STUDY INTO THE APPLICABILITY OF THERMOCHEMICAL CONVERSION TECHNOLOGY TO LEGACY ASBESTOS WASTES IN THE UK , 2005 .

[25]  H. Tasaka,et al.  Future of In-Situ Vitrification Technology Applicable to Environmental Preservation. , 1992 .

[26]  M. Lewis Glasses and glass-ceramics , 1989 .

[27]  Jiří Matěj,et al.  Electric melting of glass , 1962 .