Effects of Small Defects and Nonmetallic Inclusions on the Fatigue Strength of Metals

[1]  Hironobu Nishitani,et al.  Rotating Bending Fatigue of Electropolished Specimens with Transverse Holes-Observation of Slip Bands and Non-Propagating Cracks Near the Holes , 1973 .

[2]  M. Isida,et al.  Analysis of an arbitrarily shaped surface crack and stress field at crack front near surface. , 1985 .

[3]  Kunio Nishioka On the Effect of Inclusion upon the Fatigue Strength , 1957 .

[4]  M. Endo,et al.  Fatigue strength of carbon steel specimens having an extremely shallow notch , 1985 .

[5]  Masahiro Endo,et al.  Unifying treatment of notch effects in fatigue. , 1985 .

[6]  J. Lankford E) Effect of oxide inclusions on fatigue failure , 1977 .

[7]  S. Nemat-Nasser,et al.  Growth and stability of interacting surface flaws of arbitrary shape , 1983 .

[8]  Masahiro Endo,et al.  Unified treatment of deep and shallow notches in rotating bending fatigue , 1988 .

[9]  敬宜 村上,et al.  Effects of Small Defects and Inclusions on Fatigue Strength of Maraging Steel , 1987 .

[10]  M. Yukitaka,et al.  Quantitative evaluation of fatigue strength of metals containing various small defects or cracks , 1983 .

[11]  M. Sumita,et al.  Relationship between Nonmetallic Inclusions and Mechanical Properties of Steel , 1971 .

[12]  Y. Murakami,et al.  Torsional Fatigue and Bending Fatigue of Electropolished Low Carbon Steel Specimens , 1969 .

[13]  T. Endo,et al.  Existence of the coaxing effect and effects of small artificial holes on fatigue strength of an aluminum alloy and 70-30 brass , 1984 .

[14]  On the Anisotropy of Low-Cycle Fatigue Properties of Rolled Plates , 1972 .

[15]  敬宜 村上,et al.  Quantitative Evaluation of Effects of Nonmetallic Inclusions on Fatigue Strength of High Strength Steel , 1988 .

[16]  Hideo Kobayashi,et al.  On the Alternating Stress Required to Propagate a Fatigue Crack in Carbon Steels : Continued Report , 1970 .

[17]  P. Frith Fatigue tests on rolled alloy steels made in electric and open-hearth furnaces , 1954 .

[18]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[19]  清水 真佐男,et al.  疲労強度に及ぼす介在物,微小欠陥,微小き裂の影響 , 1988 .

[20]  Tsuneshichi Tanaka,et al.  Fatigue Strength of 18% Ni Managing Steel and the Effect of Distributed Inclusions , 1977 .

[21]  敬宜 村上,et al.  Prediction of Fatigue Strength of High-Strength Steels Based on Statistical Evaluation of Inclusion Size , 1989 .

[22]  Morris E. Fine,et al.  Fatigue Crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys , 1979 .

[23]  The early stage of fatigue crack growth in martensitic steel , 1981 .

[24]  James Lankford,et al.  Inclusion-matrix debonding and fatigue crack initiation in low alloy steel , 1976, International Journal of Fracture.

[25]  P. Thornton The influence of nonmetallic inclusions on the mechanical properties of steel: A review , 1971 .

[26]  M. Fine Fatigue resistance of metals , 1980 .

[27]  Masahiro Endo,et al.  Effects of an Artificial Small Defect on Torsional Fatigue Strength of Steels , 1987 .

[28]  Endo Masahiro,et al.  Differences of the Fatigue Process of 0.45% C Steel Quenched and Tempered at Various Tempering Temperatures , 1984 .

[29]  P. Thomason,et al.  The nucleation of fatigue cracks in a low-alloy steel under high-cycle fatigue conditions and uniaxial loading , 1979 .

[30]  Makoto Saito,et al.  Some Properties of Ultra Clean Spring Steel , 1985 .

[31]  W. Morris The effect of intermetallics composition and microstructure on fatigue crack initiation in AI 2219-T851 , 1978 .

[32]  J. Lankford,et al.  Initiation of fatigue cracks in 4340 steel , 1973 .