Phase field method

Abstract In an ideal scenario, a phase field model is able to compute quantitative aspects of the evolution of microstructure without explicit intervention. The method is particularly appealing because it provides a visual impression of the development of structure, one which often matches observations. The essence of the technique is that phases and the interfaces between the phases are all incorporated into a grand functional for the free energy of a heterogeneous system, using an order parameter which can be translated into what is perceived as a phase or an interface in ordinary jargon. There are, however, assumptions which are inconsistent with practical experience and it is important to realise the limitations of the method. The purpose of this review is to introduce the essence of the method, and to describe, in the context of materials science, the advantages and pitfalls associated with the technique.

[1]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[2]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[4]  H. Markovitz Note on ``Interference of Growing Spherical Precipitate Particles'' , 1950 .

[5]  H. Bhadeshia,et al.  M4C3 precipitation in Fe–C–Mo–V steels and relationship to hydrogen trapping , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[7]  Joseph D. Robson,et al.  Modelling precipitation sequences in power plant steels Part 1 – Kinetic theory , 1997 .

[8]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[9]  A. A. Wheeler Cahn–Hoffman ξ-Vector and Its Relation to Diffuse Interface Models of Phase Transitions , 1999 .

[10]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[11]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[12]  E. Machlin Some Applications of the Thermodynamic Theory of Irreversible Processes to Physical Metallurgy , 1953 .

[13]  N. Fujita Modelling simultaneous alloy carbide sequence in power plant steels : Transformations and Microstructures , 2002 .

[14]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[15]  Donald G. Miller THERMODYNAMICS OF IRREVERSIBLE PROCESSES: THE EXPERIMENTAL VERIFICATION OF THE ONSAGER RECIPROCAL RELATIONS , 1959 .

[16]  H. Bhadeshia,et al.  Kinetics of reconstructive austenite to ferrite transformation in low alloy steels , 1992 .

[17]  E. Fras,et al.  About Kolmogorov's statistical theory of phase transformation , 2005 .

[18]  R. Trivedi,et al.  Solidification microstructures: recent developments, future directions , 2000 .

[19]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[20]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[21]  H. Bhadeshia,et al.  Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of Fe–C–Mo martensitic steel , 2003 .

[22]  John W. Cahn,et al.  The kinetics of grain boundary nucleated reactions , 1956 .

[23]  Toshio Suzuki,et al.  Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys , 1998 .

[24]  H. K. D. H. Bhadeshia,et al.  Phase-field model study of the crystal morphological evolution of hcp metals , 2009 .

[25]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[26]  I. Steinbach,et al.  Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  G. B. McFadden,et al.  On the notion of a ξ–vector and a stress tensor for a general class of anisotropic diffuse interface models , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[29]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[30]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[31]  J. Kirkaldy,et al.  Partition of manganese during the proeutectoid ferrite transformation in steel , 1972 .

[32]  Toshio Suzuki,et al.  Recent advances in the phase-field model for solidification , 2001 .

[33]  Jilt Sietsma,et al.  Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions , 1997 .

[34]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[35]  Yunzhi Wang,et al.  Multi-scale phase field approach to martensitic transformations , 2006 .

[36]  Yunzhi Wang,et al.  Incorporation of γ-surface to phase field model of dislocations: simulating dislocation dissociation in fcc crystals , 2004 .

[37]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[38]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[39]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  S. Kim A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties , 2007 .

[41]  Katsuyo Thornton,et al.  Modelling the evolution of phase boundaries in solids at the meso- and nano-scales , 2003 .

[42]  Clarence Zener,et al.  Interference of Growing Spherical Precipitate Particles , 1950 .

[43]  Phil Won Yu,et al.  Optical characteristics of self-assembled InAs quantum dots with InGaAs grown by a molecular beam epitaxy , 2004 .

[44]  R. Vandermeer Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline FeC alloys , 1990 .

[45]  M. Lusk,et al.  Comparison of Johnson-Mehl-Avrami-Kologoromov kinetics with a phase-field model for microstructural evolution driven by substructure energy , 1997 .

[46]  Joseph D. Robson,et al.  Modelling precipitation sequences in powerplant steels Part 2 – Application of kinetic theory , 1997 .

[47]  B. Gretoft,et al.  A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits , 1985 .

[48]  H. K. D. H. Bhadeshiaa,et al.  Phase-field model study of the effect of interface anisotropy on the crystal morphological evolution of cubic metals , 2009 .

[49]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[50]  Y. Suwa,et al.  Kinetics of Phase Separation in Ternary Alloys , 2002 .

[51]  Won Tae Kim,et al.  Phase-field modeling of eutectic solidification , 2004 .

[52]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[53]  H. Bhadeshia,et al.  Modelling and characterisation of V4C3 precipitation and cementite dissolution during tempering of Fe-C-V martensitic steel , 2003 .

[54]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[55]  F. Vermolen,et al.  Analytical approach to particle dissolution in a finite medium , 1997 .

[56]  C. Atkinson,et al.  Diffusion-controlled growth of disordered interphase boundaries in finite matrix , 1993 .