Bio‐inspired Heterostructured Bead‐on‐String Fibers That Respond to Environmental Wetting

Inspired by the geometric structure of ecribellate spider capture silk and its spinning characteristics, we propose a one-step electrohydrodynamic method to fabricate bead-on-string heterostructured fibers (BSHFs). By combining electrospinning and electrospraying strategies using a sprayable outer fluid with low viscosity and a spinnable inner fluid with high viscosity in a coaxial jetting process, hydrophilic poly(ethylene glycol) beads are successfully imprinted on a hydrophobic polystyrene string. It is demonstrated that the BSHFs are capable of intelligently responding to environmental change. With a change in relative humidity, the fibers show a segmented swelling and shrinking behavior in the “bead” parts whereas the “string” parts remain the same. The elastic BSHFs with alternating hydrophilic and hydrophobic surface characteristics represent a type of mesoscale analogues that block copolymers and may bring about new properties and applications. Moreover, the combined electrohydrodynamic approach developed herein should open new routes to multifunctional one-dimensional heterostructured materials.

[1]  K. Letchford,et al.  A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[2]  F Vollrath,et al.  Strength and structure of spiders' silks. , 2000, Journal of biotechnology.

[3]  Timothy J. Vitale,et al.  Cracking in albumen photographs: An ESEM investigation , 1993, Microscopy research and technique.

[4]  P. Cui,et al.  Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. , 2005, Journal of the American Chemical Society.

[5]  H. Yang,et al.  Synthetic architectures of TiO2/H2Ti5O11.H2O, ZnO/H2Ti5O11.H2O, ZnO/TiO2/H2Ti5O11.H2O, and ZnO/TiO2 nanocomposites. , 2005, Journal of the American Chemical Society.

[6]  Effect of surface dynamics on the process of droplet formation from supported and free liquid cylinders , 1974 .

[7]  Andreas Greiner,et al.  Compound Core–Shell Polymer Nanofibers by Co‐Electrospinning , 2003 .

[8]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[9]  Lin He,et al.  Nanoparticles for bioanalysis. , 2003, Current opinion in chemical biology.

[10]  J. Lee,et al.  Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation. , 2006, Small.

[11]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[12]  Younan Xia,et al.  Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. , 2004, Small.

[13]  Chad A Mirkin,et al.  Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. , 2006, Angewandte Chemie.

[14]  M. Márquez,et al.  Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets , 2002, Science.

[15]  A. Mieszawska,et al.  Synthesis of gold nanorod/single-wall carbon nanotube heterojunctions directly on surfaces. , 2005, Journal of the American Chemical Society.

[16]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[17]  S. Tagawa,et al.  Effect of the heterointerface on transport properties of in situ formed MgO/titanate heterostructured nanowires. , 2008, Journal of the American Chemical Society.

[18]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[19]  J. Leckie,et al.  An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. , 2007, Nano letters.

[20]  Junqing Hu,et al.  Fabrication of metal-semiconductor nanowire heterojunctions. , 2005, Angewandte Chemie.

[21]  Fritz Vollrath,et al.  The contribution of atmospheric water vapour to the formation and efficiency of a spider’s capture web , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Lei Jiang,et al.  In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation , 2008 .

[23]  Cengiz S Ozkan,et al.  Multisegment nanowire sensors for the detection of DNA molecules. , 2008, Nano letters.

[24]  Bhupender S. Gupta,et al.  Co‐axial Electrospinning for Nanofiber Structures: Preparation and Applications , 2008 .

[25]  Chongwu Zhou,et al.  Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors , 2008 .

[26]  M. Kelly,et al.  The role of a single end group in poly(ethylene oxide) adsorption on colloidal and film polystyrene: complimentary sedimentation and total internal reflectance fluorescence studies , 1995 .

[27]  Y. Liu,et al.  Beaded Cobalt Oxide Nanoparticles along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices , 2005 .