Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks

In this paper, we introduce a novel method to interpret recurrent neural networks (RNNs), particularly long short-term memory networks (LSTMs) at the cellular level. We propose a systematic pipeline for interpreting individual hidden state dynamics within the network using response characterization methods. The ranked contribution of individual cells to the network’s output is computed by analyzing a set of interpretable metrics of their decoupled step and sinusoidal responses. As a result, our method is able to uniquely identify neurons with insightful dynamics, quantify relationships between dynamical properties and test accuracy through ablation analysis, and interpret the impact of network capacity on a network’s dynamical distribution. Finally, we demonstrate the generalizability and scalability of our method by evaluating a series of different benchmark sequential datasets.

[1]  Xin Zhang,et al.  End to End Learning for Self-Driving Cars , 2016, ArXiv.

[2]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  Max H. Garzon,et al.  Dynamical approximation by recurrent neural networks , 1999, Neurocomputing.

[5]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[6]  Xiaoming Liu,et al.  Do Convolutional Neural Networks Learn Class Hierarchy? , 2017, IEEE Transactions on Visualization and Computer Graphics.

[7]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[8]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[9]  Francesca Albertini,et al.  Recurrent Neural Networks: Identification and other System Theoretic Properties , 2006 .

[10]  Eduardo D. Sontag,et al.  For neural networks, function determines form , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[11]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[12]  Christopher M. Bishop,et al.  A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  Guy Rosman,et al.  Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[19]  Eduardo D. Sontag,et al.  State observability in recurrent neural networks , 1994 .

[20]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[21]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[22]  Fei-Fei Li,et al.  Visualizing and Understanding Recurrent Networks , 2015, ArXiv.

[23]  Grzegorz Chrupala,et al.  Lingusitic Analysis of Multi-Modal Recurrent Neural Networks , 2015, VL@EMNLP.

[24]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[25]  Arvind Satyanarayan,et al.  The Building Blocks of Interpretability , 2018 .

[26]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[27]  Christopher D. Manning,et al.  Compositional Attention Networks for Machine Reasoning , 2018, ICLR.

[28]  Guy Rosman,et al.  Variational End-to-End Navigation and Localization , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[29]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[30]  Grzegorz Chrupala,et al.  Representation of Linguistic Form and Function in Recurrent Neural Networks , 2016, CL.

[31]  Max H. Garzon,et al.  Observability of Neural Network Behavior , 1993, NIPS.

[32]  Eduardo D. Sontag,et al.  State observability in recurrent neural networks , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[33]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[34]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[35]  Jiebo Luo,et al.  Image Captioning with Semantic Attention , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[37]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[38]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[39]  Dean Pomerleau,et al.  ALVINN, an autonomous land vehicle in a neural network , 2015 .

[40]  Alexander M. Rush,et al.  LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[41]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[42]  Eduardo D. Sontag,et al.  UNIQUENESS OF WEIGHTS FOR RECURRENT NETS , 2006 .

[43]  DarrellTrevor,et al.  End-to-end training of deep visuomotor policies , 2016 .

[44]  Phil Blunsom,et al.  Teaching Machines to Read and Comprehend , 2015, NIPS.

[45]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[46]  Klaus-Robert Müller,et al.  PatternNet and PatternLRP - Improving the interpretability of neural networks , 2017, ArXiv.