Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms

[1]  Mattia Veronese,et al.  Mesolimbic Dopamine Function Is Related to Salience Network Connectivity: An Integrative Positron Emission Tomography and Magnetic Resonance Study , 2019, Biological Psychiatry.

[2]  Lars Muckli,et al.  The Predictive Coding Account of Psychosis , 2018, Biological Psychiatry.

[3]  Rick A Adams,et al.  Dopaminergic basis for signaling belief updates, but not surprise, and the link to paranoia , 2018, Proceedings of the National Academy of Sciences.

[4]  Anna L. Blobaum,et al.  Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators , 2018, Molecular Psychiatry.

[5]  N. Uchida,et al.  Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli , 2018, Nature Neuroscience.

[6]  Benjamin T. Saunders,et al.  Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties , 2018, Nature Neuroscience.

[7]  Pamela F. Marcott,et al.  Regional Heterogeneity of D2-Receptor Signaling in the Dorsal Striatum and Nucleus Accumbens , 2018, Neuron.

[8]  A. Abi-Dargham,et al.  Is it Pre- or Postsynaptic? Imaging Striatal Dopamine Excess in Schizophrenia , 2018, Biological Psychiatry.

[9]  N. Daw,et al.  A Perceptual Inference Mechanism for Hallucinations Linked to Striatal Dopamine , 2018, Current Biology.

[10]  O. Howes,et al.  Defining the Locus of Dopaminergic Dysfunction in Schizophrenia: A Meta-analysis and Test of the Mesolimbic Hypothesis , 2017, Schizophrenia bulletin.

[11]  J. Wess,et al.  Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M4 Muscarinic Receptor , 2017, Neuron.

[12]  H. G. Rotstein,et al.  Striatal Local Circuitry: A New Framework for Lateral Inhibition , 2017, Neuron.

[13]  T. Whitford,et al.  Neurophysiological evidence of efference copies to inner speech , 2017, eLife.

[14]  M. Kubicki,et al.  Reduced Structural Connectivity in Frontostriatal White Matter Tracts in the Associative Loop in Schizophrenia. , 2017, The American journal of psychiatry.

[15]  Santiago Jaramillo,et al.  Stable representation of sounds in the posterior striatum during flexible auditory decisions , 2017, bioRxiv.

[16]  Albert R. Powers,et al.  Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors , 2017, Science.

[17]  Koen V. Haak,et al.  Functional corticostriatal connection topographies predict goal directed behaviour in humans , 2017, Nature Human Behaviour.

[18]  Chunshui Yu,et al.  Cerebral blood flow alterations specific to auditory verbal hallucinations in schizophrenia. , 2017, The British journal of psychiatry : the journal of mental science.

[19]  Suzanne N. Haber,et al.  Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum , 2017, NeuroImage.

[20]  M. Frank,et al.  An Integrative Perspective on the Role of Dopamine in Schizophrenia , 2017, Biological Psychiatry.

[21]  Harold I. Kaplan,et al.  Kaplan & Sadock's Concise Textbook of Clinical Psychiatry , 2016 .

[22]  N. Uchida,et al.  Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice , 2016, eLife.

[23]  Tianyi Mao,et al.  A comprehensive excitatory input map of the striatum reveals novel functional organization , 2016, eLife.

[24]  Eugenio Culurciello,et al.  Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information , 2016, Neuron.

[25]  M. J. Uddin,et al.  Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release , 2016, Neuron.

[26]  S. Cragg,et al.  Cortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons , 2016, Cerebral cortex.

[27]  Jared X. Van Snellenberg,et al.  Dopamine-Related Disruption of Functional Topography of Striatal Connections in Unmedicated Patients With Schizophrenia. , 2016, JAMA psychiatry.

[28]  S. Shipp The functional logic of corticostriatal connections , 2016, Brain Structure and Function.

[29]  Anatol C. Kreitzer,et al.  Parkinsonism Driven by Antipsychotics Originates from Dopaminergic Control of Striatal Cholinergic Interneurons , 2016, Neuron.

[30]  C. Soares-Cunha,et al.  Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation , 2016, Nature Communications.

[31]  Julia C. Lemos,et al.  Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant Actions of Cocaine , 2016, Neuron.

[32]  Suzanne N. Haber,et al.  Corticostriatal circuitry , 2016, Dialogues in clinical neuroscience.

[33]  Lesley A. McCollum,et al.  Tyrosine hydroxylase localization in the nucleus accumbens in schizophrenia , 2016, Brain Structure and Function.

[34]  Lesley A. McCollum,et al.  Uncovering the role of the nucleus accumbens in schizophrenia: A postmortem analysis of tyrosine hydroxylase and vesicular glutamate transporters , 2015, Schizophrenia Research.

[35]  P. McGuire,et al.  Ventral Striatal Activation During Reward Processing in Psychosis: A Neurofunctional Meta-Analysis. , 2015, JAMA psychiatry.

[36]  P. Tobler,et al.  Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum. , 2015, Journal of neurophysiology.

[37]  Lesley A. McCollum,et al.  Elevated Excitatory Input to the Nucleus Accumbens in Schizophrenia: A Postmortem Ultrastructural Study. , 2015, Schizophrenia bulletin.

[38]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[39]  Ben Alderson-Day,et al.  The brain’s conversation with itself: neural substrates of dialogic inner speech , 2015, Social cognitive and affective neuroscience.

[40]  P. Kalivas,et al.  Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections , 2015, Nature Neuroscience.

[41]  J. Wess,et al.  Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens , 2015, Proceedings of the National Academy of Sciences.

[42]  J. Lanciego,et al.  Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats , 2015, Front. Syst. Neurosci..

[43]  Jared X. Van Snellenberg,et al.  Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. , 2015, JAMA psychiatry.

[44]  E. Kandel,et al.  Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area , 2015, Proceedings of the National Academy of Sciences.

[45]  Melissa J. Green,et al.  Corticostriatal Control of Goal-Directed Action Is Impaired in Schizophrenia , 2015, Biological Psychiatry.

[46]  Jong H. Yoon,et al.  Task-evoked substantia nigra hyperactivity associated with prefrontal hypofunction, prefrontonigral disconnectivity and nigrostriatal connectivity predicting psychosis severity in medication naïve first episode schizophrenia , 2014, Schizophrenia Research.

[47]  S. Haber,et al.  Estimates of Projection Overlap and Zones of Convergence within Frontal-Striatal Circuits , 2014, The Journal of Neuroscience.

[48]  Jimmy Lee,et al.  Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. , 2014, Schizophrenia bulletin.

[49]  T. Verstynen,et al.  Converging Structural and Functional Connectivity of Orbitofrontal, Dorsolateral Prefrontal, and Posterior Parietal Cortex in the Human Striatum , 2014, The Journal of Neuroscience.

[50]  Sylvain Houle,et al.  Stress-Induced Dopamine Response in Subjects at Clinical High Risk for Schizophrenia with and without Concurrent Cannabis Use , 2014, Neuropsychopharmacology.

[51]  Timothy Edward John Behrens,et al.  Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. , 2014, Cerebral cortex.

[52]  Anatol C. Kreitzer,et al.  Striatal Cholinergic Interneurons Drive GABA Release from Dopamine Terminals , 2014, Neuron.

[53]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[54]  Nao Chuhma,et al.  Dopamine Neurons Control Striatal Cholinergic Neurons via Regionally Heterogeneous Dopamine and Glutamate Signaling , 2014, Neuron.

[55]  M. Fee The role of efference copy in striatal learning , 2014, Current Opinion in Neurobiology.

[56]  H. Moore,et al.  Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry , 2014, Neuron.

[57]  Peter B. Jones,et al.  Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. , 2013, JAMA psychiatry.

[58]  T. Robbins,et al.  Neuroscience and Biobehavioral Reviews Review from the Ventral to the Dorsal Striatum: Devolving Views of Their Roles in Drug Addiction , 2022 .

[59]  Federico Turkheimer,et al.  Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. , 2013, Brain : a journal of neurology.

[60]  Hyoung F. Kim,et al.  Distinct Basal Ganglia Circuits Controlling Behaviors Guided by Flexible and Stable Values , 2013, Neuron.

[61]  C. Fiorillo Two Dimensions of Value: Dopamine Neurons Represent Reward But Not Aversiveness , 2013, Science.

[62]  J. Girault,et al.  Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum , 2013, Front. Neural Circuits.

[63]  Cameron S. Carter,et al.  Impaired Prefrontal-Basal Ganglia Functional Connectivity and Substantia Nigra Hyperactivity in Schizophrenia , 2013, Biological Psychiatry.

[64]  A. Egerton,et al.  Presynaptic Striatal Dopamine Dysfunction in People at Ultra-high Risk for Psychosis: Findings in a Second Cohort , 2013, Biological Psychiatry.

[65]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[66]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[67]  Mark Slifstein,et al.  The nature of dopamine dysfunction in schizophrenia and what this means for treatment. , 2012, Archives of general psychiatry.

[68]  Jens C. Pruessner,et al.  Increased Stress-Induced Dopamine Release in Psychosis , 2012, Biological Psychiatry.

[69]  Michael J Frank,et al.  Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. , 2012, Archives of general psychiatry.

[70]  T. Eichele,et al.  Increased Intrinsic Brain Activity in the Striatum Reflects Symptom Dimensions in Schizophrenia , 2012, Schizophrenia bulletin.

[71]  E. Fernandez-Egea,et al.  Differential brain glucose metabolic patterns in antipsychotic-naïve first-episode schizophrenia with and without auditory verbal hallucinations. , 2011, Journal of psychiatry & neuroscience : JPN.

[72]  R. Murray,et al.  Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study , 2011, Molecular Psychiatry.

[73]  Sylvain Houle,et al.  Effects of antipsychotics on D3 receptors: A clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO , 2011, Schizophrenia Research.

[74]  M. Frank,et al.  Deficits in Positive Reinforcement Learning and Uncertainty-Driven Exploration Are Associated with Distinct Aspects of Negative Symptoms in Schizophrenia , 2011, Biological Psychiatry.

[75]  S. Cragg,et al.  Dopamine Signaling in Dorsal Versus Ventral Striatum: The Dynamic Role of Cholinergic Interneurons , 2011, Front. Syst. Neurosci..

[76]  A. Reiner,et al.  Corticostriatal Projection Neurons – Dichotomous Types and Dichotomous Functions , 2010, Front. Neuroanat..

[77]  P. McGuire,et al.  Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. , 2010, Archives of general psychiatry.

[78]  Eleanor H. Simpson,et al.  A Possible Role for the Striatum in the Pathogenesis of the Cognitive Symptoms of Schizophrenia , 2010, Neuron.

[79]  S. Haber,et al.  Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. , 2010, Archives of general psychiatry.

[80]  P. Tobler,et al.  Functional imaging of the human dopaminergic midbrain , 2009, Trends in Neurosciences.

[81]  P. Rowe Kaplan & Sadock's Concise Textbook of Clinical Psychiatry , 2009 .

[82]  Craig Mallinckrodt,et al.  Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. , 2008, The American journal of psychiatry.

[83]  S. Stahl,et al.  Stahl's essential psychopharmacology : neuroscientific basis and practical application , 2008 .

[84]  E T Bullmore,et al.  Substantia nigra/ventral tegmental reward prediction error disruption in psychosis , 2008, Molecular Psychiatry.

[85]  S. Shergill,et al.  Brain structural changes in schizophrenia patients with persistent hallucinations , 2007, Psychiatry Research: Neuroimaging.

[86]  B. Balleine,et al.  The Role of the Dorsal Striatum in Reward and Decision-Making , 2007, The Journal of Neuroscience.

[87]  Hans-Georg Buchholz,et al.  Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge , 2006, NeuroImage.

[88]  E. Kandel,et al.  Transient and Selective Overexpression of Dopamine D2 Receptors in the Striatum Causes Persistent Abnormalities in Prefrontal Cortex Functioning , 2006, Neuron.

[89]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[90]  S. Kapur,et al.  Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. , 2001, The American journal of psychiatry.

[91]  Nikolaus R. McFarland,et al.  Striatonigrostriatal Pathways in Primates Form an Ascending Spiral from the Shell to the Dorsolateral Striatum , 2000, The Journal of Neuroscience.

[92]  D. Joel,et al.  The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum , 2000, Neuroscience.

[93]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[94]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[95]  J. Lieberman,et al.  Mechanisms of action of atypical antipsychotic drugs: a critical analysis , 1996, Psychopharmacology.

[96]  S. Haber,et al.  Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input , 1994, The Journal of comparative neurology.

[97]  A. Deutch,et al.  Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: The nucleus accumbens shell as a locus of antipsychotic action , 1992, Molecular and Cellular Neuroscience.

[98]  K. Davis,et al.  Dopamine in schizophrenia: a review and reconceptualization. , 1991, The American journal of psychiatry.

[99]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[100]  S. Siris,et al.  Implications of normal brain development for the pathogenesis of schizophrenia. , 1988, Archives of general psychiatry.

[101]  U. Ungerstedt,et al.  Rapid Postmortem Increase in Extracellular Dopamine in the Rat Brain as Assessed by Brain Microdialysis , 1988, Journal of neurochemistry.

[102]  N. Mataga,et al.  Neurotransmitters, receptors and neuropeptides in post‐mortem brains of chronic schizophrenic patients , 1988, Acta psychiatrica Scandinavica.

[103]  G. Di Chiara,et al.  Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[104]  D. Weinberger Implications of normal brain development for the pathogenesis of schizophrenia. , 1987, Archives of general psychiatry.

[105]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[106]  H. Baker,et al.  Monoamine Mechanisms in Chronic Schizophrenia: Post-Mortem Neurochemical Findings , 1979, British Journal of Psychiatry.

[107]  M. Poulter,et al.  INCREASED DOPAMINE-RECEPTOR SENSITIVITY IN SCHIZOPHRENIA , 1978, The Lancet.

[108]  L. Iversen,et al.  INCREASED BRAIN DOPAMINE AND REDUCED GLUTAMIC ACID DECARBOXYLASE AND CHOLINE ACETYL TRANSFERASE ACTIVITY IN SCHIZOPHRENIA AND RELATED PSYCHOSES , 1977, The Lancet.

[109]  R. Wurtman,et al.  Dopaminergic neurons in the nigro-striatal and mesolimbic pathways: mediation of specific effects of D-amphetamine. , 1975, European journal of pharmacology.

[110]  E. Bleuler [Dementia praecox or the group of schizophrenias]. , 1968, Vertex.

[111]  N. Malamud Psychiatric disorder with intracranial tumors of limbic system. , 1967, Archives of neurology.

[112]  R. Heath,et al.  Common characteristics of epilepsy and schizophrenia: clinical observation and depth electrode studies. 1961. , 1962, Epilepsy & behavior : E&B.

[113]  P. Connell Amphetamine Psychosis , 1957 .

[114]  Christian Scharfetter (†) Allgemeine Psychopathologie , 2020 .

[115]  A. Malhotra,et al.  Antipsychotic treatment and functional connectivity of the striatum in first-episode schizophrenia. , 2015, JAMA psychiatry.

[116]  P. McGuire,et al.  Abnormal prefrontal activation directly related to pre-synaptic striatal dopamine dysfunction in people at clinical high risk for psychosis , 2011, Molecular Psychiatry.

[117]  S. Haber,et al.  The Reward Circuit: Linking Primate Anatomy and Human Imaging , 2010, Neuropsychopharmacology.

[118]  Marie-Claude Asselin,et al.  Elevated striatal dopamine function linked to prodromal signs of schizophrenia. , 2009, Archives of general psychiatry.

[119]  W. Honig,et al.  Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat , 2004, Psychopharmacologia.

[120]  S. Kapur Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. , 2003, The American journal of psychiatry.

[121]  T. Lidsky Reevaluation of the mesolimbic hypothesis of antipsychotic drug action. , 1995, Schizophrenia bulletin.

[122]  P. Goldman-Rakic Working memory dysfunction in schizophrenia. , 1994, The Journal of neuropsychiatry and clinical neurosciences.

[123]  P. Goldman-Rakic,et al.  Topography of Corticostriatal Projections in Nonhuman Primates and Implications for Functional Parcellation of the Neostriatum , 1986 .

[124]  I Feinberg,et al.  Efference copy and corollary discharge: implications for thinking and its disorders. , 1978, Schizophrenia bulletin.

[125]  H. Künzle An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. , 1978, Brain, behavior and evolution.

[126]  S. Stahl,et al.  The dopamine hypothesis of schizophrenia: a review. , 1976, Schizophrenia bulletin.

[127]  A. N. Sokolov,et al.  Inner Speech and Thought , 1972 .

[128]  F. Gibbs Ictal and non-ictal psychiatric disorders in temporal lobe epilepsy. , 1951, The Journal of nervous and mental disease.