Piezoelectric materials for tissue regeneration: A review.

[1]  Senentxu Lanceros-Méndez,et al.  Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. , 2015, Journal of biomedical materials research. Part A.

[2]  Clarisse Ribeiro,et al.  Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). , 2015, Journal of biomedical materials research. Part A.

[3]  Kaushik Chatterjee,et al.  Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration , 2014, Nanotechnology.

[4]  X. Wang,et al.  Myocardial Cell Pattern on Piezoelectric Nanofiber Mats for Energy Harvesting , 2014 .

[5]  Yan Zhang,et al.  Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. , 2014, Materials science & engineering. C, Materials for biological applications.

[6]  B. Mazzolai,et al.  Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. , 2014, Nanomedicine.

[7]  Meili Liu,et al.  Piezoelectric Ceramic (PZT) Modulates Axonal Guidance Growth of Rat Cortical Neurons via RhoA, Rac1, and Cdc42 Pathways , 2014, Journal of Molecular Neuroscience.

[8]  M. Prabhakaran,et al.  Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. , 2013, Materials science & engineering. C, Materials for biological applications.

[9]  S. Bauer,et al.  Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon , 2013, Scientific Reports.

[10]  Christine E Schmidt,et al.  Electric field stimulation through a substrate influences Schwann cell and extracellular matrix structure , 2013, Journal of neural engineering.

[11]  Michael Jaffe,et al.  Structural changes in PVDF fibers due to electrospinning and its effect on biological function , 2013, Biomedical materials.

[12]  A. Alparone Response electric properties of α-helix polyglycines: A CAM-B3LYP DFT investigation , 2013 .

[13]  B. Mazzolai,et al.  Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells. , 2013, Colloids and surfaces. B, Biointerfaces.

[14]  F. A. Sheikh,et al.  Zinc oxide-doped poly(urethane) spider web nanofibrous scaffold via one-step electrospinning: a novel matrix for tissue engineering , 2012, Applied Microbiology and Biotechnology.

[15]  William Craelius,et al.  Piezoelectric Substrates Promote Neurite Growth in Rat Spinal Cord Neurons , 2012, Annals of Biomedical Engineering.

[16]  D. Ying,et al.  Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. , 2012, Colloids and surfaces. B, Biointerfaces.

[17]  R. Shahbazian‐Yassar,et al.  Structural inhomogeneity and piezoelectric enhancement in ZnO nanobelts , 2012 .

[18]  T. Arinzeh,et al.  The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. , 2012, Tissue engineering. Part A.

[19]  K. Bolton,et al.  Molecular dynamics simulations of α- to β-poly(vinylidene fluoride) phase change by stretching and poling , 2012 .

[20]  J. A. Panadero,et al.  Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films , 2012, Biomedical materials.

[21]  W. Tuan,et al.  Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics , 2012 .

[22]  George Collins,et al.  Neurite extension of primary neurons on electrospun piezoelectric scaffolds. , 2011, Acta biomaterialia.

[23]  Seeram Ramakrishna,et al.  Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. , 2011, Journal of bioscience and bioengineering.

[24]  Wonkyu Moon,et al.  Permanent Polarity and Piezoelectricity of Electrospun α‐Helical Poly(α‐Amino Acid) Fibers , 2011, Advanced materials.

[25]  A. Gruverman,et al.  Orientational imaging in polar polymers by piezoresponse force microscopy , 2011 .

[26]  B. Towe,et al.  Miniature ultrasonically powered wireless nerve cuff stimulator , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[27]  Arnaud Magrez,et al.  In vitro investigation of the cellular toxicity of boron nitride nanotubes. , 2011, ACS nano.

[28]  M. H. Fernandes,et al.  Protein adsorption on piezoelectric poly(L-lactic) acid thin films by scanning probe microscopy , 2011 .

[29]  K. Yokoyama,et al.  Early pregnancy blood lead levels and the risk of premature rupture of the membranes. , 2010, Reproductive toxicology.

[30]  M. Minary‐Jolandan,et al.  Shear piezoelectricity in bone at the nanoscale , 2010 .

[31]  Arianna Menciassi,et al.  Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. , 2010, ACS nano.

[32]  T. Arinzeh,et al.  Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. , 2010, Acta biomaterialia.

[33]  A. Menciassi,et al.  Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay. , 2010, Biochemical and biophysical research communications.

[34]  M. Prabhakaran,et al.  Electrospun nanostructured scaffolds for bone tissue engineering. , 2009, Acta biomaterialia.

[35]  C. Schmidt,et al.  Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. , 2009, Biomaterials.

[36]  L. Ghasemi‐Mobarakeh,et al.  Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. , 2009, Tissue engineering. Part A.

[37]  David L. Kaplan,et al.  Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation , 2009, Stem Cell Reviews and Reports.

[38]  M. Minary‐Jolandan,et al.  Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. , 2009, ACS nano.

[39]  Jianguo Zhu,et al.  Manufacture and Cytotoxicity of a Lead-free Piezoelectric Ceramic as a Bone Substitute—Consolidation of Porous Lithium Sodium Potassium Niobate by Cold Isostatic Pressing , 2009, International Journal of Oral Science.

[40]  J. Chaudhuri,et al.  An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells , 2009, Journal of materials science. Materials in medicine.

[41]  Andrew C Ahn,et al.  Relevance of collagen piezoelectricity to "Wolff's Law": a critical review. , 2009, Medical engineering & physics.

[42]  Majid Minary-Jolandan,et al.  Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity , 2009, Nanotechnology.

[43]  H. Donahue,et al.  From streaming‐potentials to shear stress: 25 years of bone cell mechanotransduction , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[44]  Zev J. Gartner,et al.  Boron Nitride Nanotubes Are Noncytotoxic and Can Be Functionalized for Interaction with Proteins and Cells , 2009, Journal of the American Chemical Society.

[45]  T. Webster,et al.  Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites , 2008, International journal of nanomedicine.

[46]  Dong-Dong Wu,et al.  Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair , 2008, BMC Evolutionary Biology.

[47]  Heungsoo Shin,et al.  Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion. , 2008, Macromolecular bioscience.

[48]  Sergei V. Kalinin,et al.  High-resolution imaging of proteins in human teeth by scanning probe microscopy. , 2007, Biochemical and biophysical research communications.

[49]  Ningsheng Xu,et al.  Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures , 2006 .

[50]  S. Ramakrishna,et al.  Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. , 2005, Biomaterials.

[51]  Walter H. Chang,et al.  Effect of pulse‐burst electromagnetic field stimulation on osteoblast cell activities , 2004, Bioelectromagnetics.

[52]  Georg E Fantner,et al.  High-resolution AFM imaging of intact and fractured trabecular bone. , 2004, Bone.

[53]  S. Ramakrishna,et al.  Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. , 2004, Biomaterials.

[54]  Maria E. Mycielska,et al.  Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease , 2004, Journal of Cell Science.

[55]  D. Lyman,et al.  The orientation of the a-helices in a-keratin fibres , 2003 .

[56]  R. Nuccitelli,et al.  Endogenous electric fields in embryos during development, regeneration and wound healing. , 2003, Radiation protection dosimetry.

[57]  Angel Rubio,et al.  Electronic and crystallographic structure of apatites , 2003 .

[58]  Min Zhao,et al.  Has electrical growth cone guidance found its potential? , 2002, Trends in Neurosciences.

[59]  H. Chan,et al.  Water-induced degradation in lead zirconate titanate piezoelectric ceramics , 2002 .

[60]  S. Nakamura,et al.  Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. , 2001, Journal of biomedical materials research.

[61]  C. Schmidt,et al.  Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. , 2001, Biomaterials.

[62]  U. Joos,et al.  Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. , 2001, Biochimica et biophysica acta.

[63]  H. Wiesmann,et al.  Capacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formation in vitro , 2000, European Biophysics Journal.

[64]  H. Uehata,et al.  Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. , 2000, Circulation.

[65]  B. Boyan,et al.  Pulsed electromagnetic field stimulation of MG63 osteoblast‐like cells affects differentiation and local factor production , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[66]  Hiroshi Maiwa,et al.  Piezoelectric Measurements with Atomic Force Microscopy , 1998 .

[67]  Guy Riddihough,et al.  Structure of collagen , 1998, Nature Structural Biology.

[68]  J. Kanczler,et al.  Pulsed Electromagnetic Fields Simultaneously Induce Osteogenesis and Upregulate Transcription of Bone Morphogenetic Proteins 2 and 4 in Rat Osteoblastsin Vitro , 1998 .

[69]  Eiichi Fukada,et al.  Electromechanical Properties of Poly-L-Lactic Acid , 1998 .

[70]  C. Schmidt,et al.  Electrical Stimulation Of Neurite Outgrowth And Nerve Regeneration , 1998, Proceedings of the 17th Southern Biomedical Engineering Conference.

[71]  R Langer,et al.  Stimulation of neurite outgrowth using an electrically conducting polymer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[72]  C. Brighton,et al.  Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. , 1997, Biochemical and biophysical research communications.

[73]  K. Yamashita,et al.  Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling , 1996 .

[74]  M Tagawa,et al.  Enhancement of bone formation by drawn poly(L-lactide). , 1996, Journal of biomedical materials research.

[75]  E. Fukada,et al.  Structural and optical properties of poly lactic acids , 1995 .

[76]  Greer Rb rd Wolff's Law. , 1993 .

[77]  P. Botti,et al.  Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[78]  T. Takano-Yamamoto,et al.  Effect of a Pulsing Electromagnetic Field on Demineralized Bone-matrix-induced Bone Formation in a Bony Defect in the Premaxilla of Rats , 1992, Journal of dental research.

[79]  R F Valentini,et al.  Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. , 1991, Biomaterials.

[80]  E. Fukada Bioelectrets and biopiezoelectricity , 1991 .

[81]  L. Grant,et al.  The comparative developmental neurotoxicity of lead in humans and animals. , 1990, Neurotoxicology and teratology.

[82]  P. Succop,et al.  Fetal and infant lead exposure: effects on growth in stature. , 1989, Pediatrics.

[83]  S W Hui,et al.  Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent , 1988, The Journal of cell biology.

[84]  P. Dario,et al.  Piezoelectric nerve guidance channels enhance peripheral nerve regeneration. , 1987, ASAIO transactions.

[85]  H. Ohigashi,et al.  Piezoelectric and ferroelectric properties of P (VDF-TrFE) copolymers and their application to ultrasonic transducers , 1984 .

[86]  M. Poo,et al.  Orientation of neurite growth by extracellular electric fields , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  E. Fukada,et al.  Calculation of Elastic and Piezoelectric Constants of Polymer Crystals by a Point Charge Model: Application to Poly(vinylidene fluoride) Form I , 1980 .

[88]  L. Jaffe,et al.  Neurites grow faster towards the cathode than the anode in a steady field. , 1979, The Journal of experimental zoology.

[89]  E. Fukada,et al.  Piezoelectricity of a-chitin , 1975 .

[90]  Andrew A. Marino,et al.  Piezoelectricity in hydrated frozen bone and tendon , 1975, Nature.

[91]  R. J. Pawluk,et al.  Electrical Behavior of Cartilage during Loading , 1972, Science.

[92]  A. Liboff,et al.  Piezoelectric Effect in Dentin , 1971, Journal of dental research.

[93]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[94]  J. Anderson,et al.  Electrical Properties of Wet Collagen , 1968, Nature.

[95]  C A Bassett,et al.  Biologic significance of piezoelectricity , 1967, Calcified tissue research.

[96]  M. Shamos,et al.  Piezoelectricity as a Fundamental Property of Biological Tissues , 1967, Nature.

[97]  S. Lang,et al.  Pyroelectric Effect in Bone and Tendon , 1966, Nature.

[98]  R. Becker,et al.  Photoelectric Effects in Human Bone , 1965, Nature.

[99]  A. S. Posner,et al.  Crystal Structure of Hydroxyapatite , 1964, Nature.

[100]  R. J. Pawluk,et al.  Effects of Electric Currents on Bone In Vivo , 1964, Nature.

[101]  M. Shamos,et al.  Piezoelectric Effect in Bone , 1963, Nature.

[102]  J. Duchesne,et al.  Thermal and Electrical Properties of Nucleic Acids and Proteins , 1960, Nature.

[103]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[104]  G. Shirane,et al.  Phase Transitions in Solid Solutions of PbZrO 3 and PbTiO 3 (II) X-ray Study , 1952 .

[105]  A. J. Martin,et al.  Tribo-electricity in wool and hair , 1941 .

[106]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .

[107]  D. McCormick Chapter 12 – Membrane Potential and Action Potential , 2014 .

[108]  M. Minary‐Jolandan,et al.  Mechanical and Electromechanical Characterization of One-Dimensional Piezoelectric Nanomaterials , 2012 .

[109]  Yun-Chul Hong,et al.  Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: a report of the children's health and environment research (CHEER). , 2009, Neurotoxicology.

[110]  Yinfa Ma,et al.  Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells , 2009 .

[111]  Ying Chen,et al.  Synthesis of Boron Nitride Nanotubes Using a Ball-Milling and Annealing Method , 2006 .

[112]  Richard Nuccitelli,et al.  A role for endogenous electric fields in wound healing. , 2003, Current topics in developmental biology.

[113]  F. Foster,et al.  A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[114]  J. Kanczler,et al.  Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. , 1998, Biochemical and biophysical research communications.

[115]  X Zhang,et al.  Promotion of osteogenesis by a piezoelectric biological ceramic. , 1997, Biomaterials.

[116]  R F Valentini,et al.  Electrically charged polymeric substrates enhance nerve fibre outgrowth in vitro. , 1992, Biomaterials.

[117]  Andrew A. Marino,et al.  Piezoelectricity in cementum, dentine and bone. , 1989, Archives of oral biology.

[118]  S. Pollack,et al.  The origin of stress‐generated potentials in fluid‐saturated bone , 1983, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[119]  D. Gross,et al.  Streaming potential and the electromechanical response of physiologically-moist bone. , 1982, Journal of biomechanics.

[120]  A F von Recum,et al.  Piezoelectric ceramic implants: in vivo results. , 1981, Journal of biomedical materials research.

[121]  H. Nesbitt,et al.  Thermodynamic stability and kinetics of perovskite dissolution , 1981, Nature.

[122]  Marvin W. Johnson,et al.  Comparison of the electromechanical effects in wet and dry bone , 1980 .

[123]  J. Gillespie,et al.  The Keratin Proteins of Wool, Horn and Hoof from Sheep , 1977 .

[124]  W. Williams,et al.  Piezoelectricity in tendon and bone. , 1975, Journal of biomechanics.

[125]  P. Curie,et al.  Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées , 1880 .