Slewing Flexible Spacecraft with Deflection-Limiting Input shaping

A control scheme is described for slewing e exible spacecraft with both suppression of dee ection during the slew and elimination of residual oscillations. The method minimizes the maneuver time subject to constraints on residual vibration magnitude, sensitivity to modeling errors, rest-to-rest slew distance, and the transient dee ection amplitude. Furthermore, a solution is sought that provides inherent fuel efe ciency. The feasibility of the approach is demonstrated with linear and nonlinear computer simulations.

[1]  F. Tung,et al.  Navigation and control. , 1968 .

[2]  Qiang Liu,et al.  Robust time-optimal control of uncertain structural dynamic systems , 1993 .

[3]  Tarunraj Singh,et al.  Fuel/Time Optimal Control of the Benchmark Problem , 1995 .

[4]  J. Junkins,et al.  Optimal Large-Angle Single-Axis Rotational Maneuvers of Flexible Spacecraft , 1980 .

[5]  Lucy Y. Pao,et al.  A comparison of constant and variable amplitude command shaping techniques for vibration reduction , 1995, Proceedings of International Conference on Control Applications.

[6]  J. He,et al.  Design of space structure control systems using on-off thrusters , 1981 .

[7]  Qiang Liu,et al.  Robust Time-Optimal Control of Uncertain Flexible Spacecraft , 1992 .

[8]  Eugene M. Cliff,et al.  Time-optimal slewing of flexible spacecraft , 1992 .

[9]  R. L. Farrenkopf Optimal Open-Loop Maneuver Profiles for Flexible Spacecraft , 1979 .

[10]  R. E. Bolz,et al.  CRC Handbook of tables for Applied Engineering Science , 1970 .

[11]  Warren P. Seering,et al.  FUEL-EFFICIENT PULSE COMMAND PROFILES FOR FLEXIBLE SPACECRAFT , 1996 .

[12]  William Singhose,et al.  Vibration Reduction Using Multi-Hump Input Shapers , 1997 .

[13]  Lucy Y. Pao,et al.  Minimum-time control characteristics of flexible structures , 1996 .

[14]  Kam K. Leang,et al.  Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures , 1998 .

[15]  Keith Rogers,et al.  Input shaping for limiting loads and vibration in systems with on-off actuators , 1996 .

[16]  Warren P. Seering,et al.  Closed-form methods for on-off control of multi-mode flexible structures , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[17]  Otto J. M. Smith,et al.  Feedback control systems , 1958 .

[18]  O. Smith Posicast Control of Damped Oscillatory Systems , 1957 .

[19]  William Singhose,et al.  Command Shaping in Tracking Control of a Two-Link Flexible Robot , 1998 .

[20]  Jinyoung Suk,et al.  Experimental Evaluation of the Torque-Shaping Method for Slew Maneuver of Flexible Space Structures , 1998 .

[21]  C. Swigert Shaped Torque Techniques , 1980 .

[22]  Hyochoong Bang,et al.  NEAR-MINIMUM-TIME CONTROL OF DISTRIBUTED PARAMETER-SYSTEMS - ANALYTICAL AND EXPERIMENTAL RESULTS , 1991 .

[23]  Tarunraj Singh,et al.  Robust time-optimal control - Frequency domain approach , 1994 .

[24]  L. Silverberg,et al.  Fuel Optimal Propulsive Maneuver of an Experimental Structure Exhibiting Spacelike Dynamics , 1996 .

[25]  Warren P. Seering,et al.  Closed-form generation of specified-fuel commands for flexible systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[26]  Warren P. Seering,et al.  Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs , 1994 .

[27]  William Singhose,et al.  On the equivalence of minimum time input shaping with traditional time-optimal control , 1995, Proceedings of International Conference on Control Applications.

[28]  William Singhose,et al.  EXTRA-INSENSITIVE INPUT SHAPERS FOR CONTROLLING FLEXIBLE SPACECRAFT , 1996 .

[29]  Pierre T. Kabamba,et al.  Planar, time-optimal, rest-to-rest slewing maneuvers of flexible spacecraft , 1989 .

[30]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[31]  John L. Junkins,et al.  Near-Minimum Time, Closed-Loop Slewing of Flexible Spacecraft , 1990 .