Analytical calculation of MCSCF dipole‐moment derivatives

The analytical calculation of molecular dipole‐moment derivatives for MCSCF wave functions is described. The formalism is based on exponential unitary transformation of the wave function and symmetric orthonormalization of the molecular orbitals. The response equations are solved using an iterative, direct technique to allow for large configuration expansions. Translational and rotational symmetries of the dipole moment are used to minimize computational costs. Sample calculations involving several thousand configurations are presented for H2O and ONF.

[1]  H. Tatewaki A systematic preparation of new contracted Gaussian‐type orbitals. IX [54/5], [64/5], [64/6], [74/6], [74/7] and MAXI‐1–MAXI‐5 from Li to Ne , 1985 .

[2]  R. Amos SCF dipole moment derivatives, harmonic frequencies and infrared intensities for C2H2 and C2H4 , 1985 .

[3]  C. D. Esposti,et al.  Microwave spectrum of 18O14NF in excited vibrational states: Equilibrium structure of nitrosyl fluoride , 1985 .

[4]  Hans Ågren,et al.  MC SCF optimization using the direct, restricted step, second-order norm-extended optimization method , 1984 .

[5]  T. Helgaker,et al.  A second-quantization approach to the analytical evaluation of response properties for perturbation-dependent basis sets , 1984 .

[6]  R. Amos Dipole moment derivatives of H2O and H2S , 1984 .

[7]  P. Jørgensen,et al.  Geometrical derivatives of dipole moments and polarizabilities , 1984 .

[8]  Poul Jo,et al.  A direct approach to second‐order MCSCF calculations using a norm extended optimization scheme , 1984 .

[9]  J. Simons,et al.  Ab initio analytical molecular gradients and Hessians , 1983 .

[10]  Willis B. Person,et al.  Interpretation of infrared intensity changes on molecular complex formation. I. Water dimer , 1983 .

[11]  B. H. Lengsfield,et al.  General second‐order MCSCF theory for large CI expansions , 1982 .

[12]  Giuseppe Zerbi,et al.  Vibrational intensities in infrared and Raman spectroscopy , 1982 .

[13]  R. Bartlett,et al.  Molecular hyperpolarizabilities. II. A correlated study ofH2O , 1981 .

[14]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[15]  A. Komornicki,et al.  An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene , 1979 .

[16]  M. Allegrini,et al.  Stark spectroscopy with the CO laser: The ν1 fundamental band of nitrosyl fluoride, FNO, at 5.42 μm , 1978 .

[17]  A. J. Sadlej,et al.  Molecular electric polarizabilities. Electronic-field-variant (EFV) gaussian basis set for polarizability calculations , 1977 .

[18]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[19]  P. Pulay,et al.  Force Constants and Dipole Moment Derivatives of Ammonia from Hartree‐Fock Calculations , 1972 .

[20]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[21]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[22]  R. Moccia Variable bases in SCF MO calculations , 1970 .

[23]  J. Gerratt,et al.  Force Constants and Dipole‐Moment Derivatives of Molecules from Perturbed Hartree–Fock Calculations. II. Applications to Limited Basis‐Set SCF–MO Wavefunctions , 1968 .

[24]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .