Supported Lipid Bilayers for the Generation of Dynamic Cell–Material Interfaces

Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.

[1]  Gregory J. Hardy,et al.  Biomimetic supported lipid bilayers with high cholesterol content formed by α-helical peptide-induced vesicle fusion. , 2012, Journal of materials chemistry.

[2]  M. Kirschner,et al.  Self-Assembly of Filopodia-Like Structures on Supported Lipid Bilayers , 2010, Science.

[3]  D. Axelrod Cell-substrate contacts illuminated by total internal reflection fluorescence , 1981, The Journal of cell biology.

[4]  P. Cremer,et al.  Protein separation by electrophoretic-electroosmotic focusing on supported lipid bilayers. , 2011, Analytical chemistry.

[5]  Geoff P. O’Donoghue,et al.  Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles , 2011, Nano letters.

[6]  A. Offenhäusser,et al.  Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  L. Rozanski,et al.  Planar Supported Lipid Bilayer Polymers Formed by Vesicle Fusion. 1. Influence of Diene Monomer Structure and Polymerization Method on Film Properties , 2003 .

[8]  Kai Simons,et al.  Cell membranes: the lipid perspective. , 2011, Structure.

[9]  S. Saavedra,et al.  Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[10]  K. Cheng,et al.  Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. , 2006, Biochemistry.

[11]  Carolyn R. Bertozzi,et al.  Control of cell adhesion and growth with micropatterned supported lipid membranes , 2001 .

[12]  M. Tirrell,et al.  Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. , 1999, Biomaterials.

[13]  K. Salaita,et al.  Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling , 2011, Nature Protocols.

[14]  M. L. Wagner,et al.  Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. , 2000, Biophysical journal.

[15]  Joshua A. Jackman,et al.  Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability. , 2011, Colloids and surfaces. B, Biointerfaces.

[16]  L. Bagatolli,et al.  Structure of spin-coated lipid films and domain formation in supported membranes formed by hydration. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  Gareth E. Jones,et al.  The leukocyte podosome. , 2006, European journal of cell biology.

[18]  A. Parikh,et al.  Cell attachment behavior on solid and fluid substrates exhibiting spatial patterns of physical properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[19]  Charles R. Cantor,et al.  Interaction of Biotin with Streptavidin , 1997, The Journal of Biological Chemistry.

[20]  Wolfgang Knoll,et al.  Biotechnology Applications of Tethered Lipid Bilayer Membranes , 2012, Materials.

[21]  M. Ornatska,et al.  Interaction of nanoparticles with lipid membrane. , 2008, Nano letters.

[22]  S. Risbud,et al.  Phospholipid bilayer formation on hydroxyapatite sol-gel synthesized films. , 2011, Colloids and surfaces. B, Biointerfaces.

[23]  J. Eijkel,et al.  On-Chip Electrophoresis in Supported Lipid Bilayer Membranes Achieved Using Low Potentials , 2013, Journal of the American Chemical Society.

[24]  Jinn Shiun Chen,et al.  Antibody conjugated supported lipid bilayer for capturing and purification of viable tumor cells in blood for subsequent cell culture. , 2013, Biomaterials.

[25]  Kai Simons,et al.  Greasing their way: lipid modifications determine protein association with membrane rafts. , 2010, Biochemistry.

[26]  A. Parikh,et al.  A comparison of lateral diffusion in supported lipid monolayers and bilayers , 2010 .

[27]  S. Evans,et al.  On-chip alternating current electrophoresis in supported lipid bilayer membranes. , 2012, Analytical chemistry.

[28]  Cremer,et al.  Creating addressable aqueous microcompartments above solid supported phospholipid bilayers using lithographically patterned poly(dimethylsiloxane) molds , 2000, Analytical chemistry.

[29]  W. Sessa,et al.  Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation. , 2010, Cardiovascular research.

[30]  J. Killian,et al.  Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. , 2004, Biochemistry.

[31]  M. Poo,et al.  Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane , 1977, Nature.

[32]  K. Jacobson,et al.  Direct measurement of lateral transport in membranes by using time-resolved spatial photometry. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Sheetz,et al.  Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation , 2011, Proceedings of the National Academy of Sciences.

[34]  Michael F. Brown,et al.  Reconstitution of rhodopsin into polymerizable planar supported lipid bilayers: influence of dienoyl monomer structure on photoactivation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[35]  Seung-Yong Jung,et al.  Creating fluid and air-stable solid supported lipid bilayers. , 2004, Journal of the American Chemical Society.

[36]  M. Textor,et al.  Supported lipopolysaccharide bilayers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[37]  Erich Sackmann,et al.  Polymer-supported membranes as models of the cell surface , 2005, Nature.

[38]  B. Fadeel,et al.  The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease , 2009, Critical reviews in biochemistry and molecular biology.

[39]  A. Janshoff,et al.  Micropatterned solid-supported membranes formed by micromolding in capillaries , 2000, European Biophysics Journal.

[40]  Yung Chang,et al.  Using crosslinkable diacetylene phospholipids to construct two-dimensional packed beds in supported lipid bilayer separation platforms , 2013, Science and technology of advanced materials.

[41]  S. Evans,et al.  Manipulation and sorting of membrane proteins using patterned diffusion- aided ratchets with AC fields in supported lipid bilayers† , 2012 .

[42]  Richard G. W. Anderson,et al.  Lipid rafts: at a crossroad between cell biology and physics , 2007, Nature Cell Biology.

[43]  R. Richter,et al.  On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. , 2005, Biophysical journal.

[44]  C. Blobel,et al.  Adam Meets Eph: An ADAM Substrate Recognition Module Acts as a Molecular Switch for Ephrin Cleavage In trans , 2005, Cell.

[45]  H. Mao,et al.  Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. , 2001, Analytical chemistry.

[46]  Fredrik Höök,et al.  Protein adsorption on supported phospholipid bilayers. , 2002, Journal of colloid and interface science.

[47]  B. Treutlein,et al.  In situ synthesis of lipopeptides as versatile receptors for the specific binding of nanoparticles and liposomes to solid-supported membranes. , 2008, Small.

[48]  Robert E Miles,et al.  Minimal F-actin cytoskeletal system for planar supported phospholipid bilayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[49]  B. Kasemo,et al.  Cell adhesion on supported lipid bilayers. , 2003, Journal of biomedical materials research. Part A.

[50]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[51]  R. Richter,et al.  Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. , 2005, Biophysical journal.

[52]  J. A. Maurer,et al.  Microcontact printing for creation of patterned lipid bilayers on tetraethylene glycol self-assembled monolayers. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[53]  S. Boxer,et al.  E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[54]  Peter Lenz,et al.  Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[55]  F. Höök,et al.  Accumulation and separation of membrane-bound proteins using hydrodynamic forces. , 2011, Analytical chemistry.

[56]  G. Reinhart,et al.  Impact of hapten presentation on antibody binding at lipid membrane interfaces. , 2008, Biophysical journal.

[57]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[58]  F. Benazzo,et al.  Articular Cartilage Treatment in High-Level Male Soccer Players , 2011, The American journal of sports medicine.

[59]  C. Bertozzi,et al.  Synthetic trehalose glycolipids confer desiccation resistance to supported lipid monolayers. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[60]  Ingo Köper,et al.  Tethered bimolecular lipid membranes - A novel model membrane platform , 2006 .

[61]  N. Huang,et al.  Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. , 2014, Colloids and surfaces. B, Biointerfaces.

[62]  E. Mansfield,et al.  Preparation and characterization of cross-linked phospholipid bilayer capillary coatings for protein separations. , 2007, Analytical chemistry.

[63]  K. Lundstrom,et al.  Structural genomics for membrane proteins , 2006, Cellular and Molecular Life Sciences CMLS.

[64]  H. Mcconnell,et al.  Allogeneic stimulation of cytotoxic T cells by supported planar membranes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Nicholas W Turner,et al.  Formation of protein molecular imprints within Langmuir monolayers: a quartz crystal microbalance study. , 2007, Journal of colloid and interface science.

[66]  J. Karp,et al.  Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. , 2010, Biomaterials.

[67]  P. Cremer,et al.  Creating Spatially Addressed Arrays of Planar Supported Fluid Phospholipid Membranes , 1999 .

[68]  M. Karperien,et al.  Locked-in biomimetic surface gradients that are tunable in size, density and functionalization. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[69]  In Situ Peptide-Modified Supported Lipid Bilayers for Controlled Cell Attachment , 2003 .

[70]  F. Watt Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. , 1988, Journal of cell science.

[71]  S. Boxer,et al.  Electric field-induced reorganization of two-component supported bilayer membranes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Risbud,et al.  Phospholipid bilayer formation on a variety of nanoporous oxide and organic xerogel films. , 2011, Acta biomaterialia.

[73]  A. Parikh,et al.  Protecting, patterning, and scaffolding supported lipid membranes using carbohydrate glasses. , 2008, Lab on a chip.

[74]  Debjit Dutta,et al.  Synthetic chemoselective rewiring of cell surfaces: generation of three-dimensional tissue structures. , 2011, Journal of the American Chemical Society.

[75]  Deborah A. Brown,et al.  Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface , 1992, Cell.

[76]  N. Steinmetz,et al.  Membrane-grafted hyaluronan films: a well-defined model system of glycoconjugate cell coats. , 2007, Journal of the American Chemical Society.

[77]  E. Zamir,et al.  Molecular complexity and dynamics of cell-matrix adhesions. , 2001, Journal of cell science.

[78]  J. Vörös,et al.  Liposome and lipid bilayer arrays towards biosensing applications. , 2010, Small.

[79]  Frederick R Maxfield,et al.  Plasma membrane microdomains. , 2002, Current opinion in cell biology.

[80]  P. Cremer,et al.  Coupling supported lipid bilayer electrophoresis with matrix-assisted laser desorption/ionization-mass spectrometry imaging. , 2013, Analytical chemistry.

[81]  Melissa L Knothe Tate,et al.  Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. , 2013, Biomaterials.

[82]  Fredrik Höök,et al.  Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates , 2010, Nature Protocols.

[83]  R. Goody,et al.  Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. , 2009, Nature chemical biology.

[84]  Petra Schwille,et al.  Reconstitution of cytoskeletal protein assemblies for large-scale membrane transformation. , 2014, Current opinion in chemical biology.

[85]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[86]  P. Devaux,et al.  Static and dynamic lipid asymmetry in cell membranes. , 1991, Biochemistry.

[87]  M. Mayer,et al.  Hydrogel stamping of arrays of supported lipid bilayers with various lipid compositions for the screening of drug-membrane and protein-membrane interactions. , 2005, Angewandte Chemie.

[88]  L. Kiessling,et al.  Synthetic multivalent ligands in the exploration of cell-surface interactions. , 2000, Current opinion in chemical biology.

[89]  Salvador Tomas,et al.  Mutual modulation between membrane-embedded receptor clustering and ligand binding in lipid membranes. , 2010, Nature chemistry.

[90]  Deborah A. Brown,et al.  Lipid rafts, detergent-resistant membranes, and raft targeting signals. , 2006, Physiology.

[91]  L. Johnston,et al.  The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. , 2002, Biophysical journal.

[92]  H. Kleinman,et al.  Interaction of fibronectin with collagen fibrils. , 1981, Biochemistry.

[93]  Jay T. Groves,et al.  Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics , 2014, Science.

[94]  V. Zhdanov,et al.  Adsorption of proteins on a lipid bilayer , 2010, European Biophysics Journal.

[95]  H. Hayashi,et al.  The consensus motif for N‐myristoylation of plant proteins in a wheat germ cell‐free translation system , 2010, The FEBS journal.

[96]  Manuel K. Schneider,et al.  A universal method for planar lipid bilayer formation by freeze and thaw , 2012 .

[97]  P. Labbé,et al.  Cell adhesion through clustered ligand on fluid supported lipid bilayers. , 2010, Organic & biomolecular chemistry.

[98]  D. Leckband,et al.  Single cell 3-D platform to study ligand mobility in cell-cell contact. , 2011, Lab on a chip.

[99]  P. Cremer,et al.  Phosphatidylserine reversibly binds Cu2+ with extremely high affinity. , 2012, Journal of the American Chemical Society.

[100]  Jenny Brinkmann,et al.  About supramolecular systems for dynamically probing cells. , 2014, Chemical Society reviews.

[101]  Martin Hof,et al.  Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. , 2010, Biochimica et biophysica acta.

[102]  R. M. A. Sullan,et al.  Cholesterol-dependent nanomechanical stability of phase-segregated multicomponent lipid bilayers. , 2010, Biophysical journal.

[103]  E. Ruoslahti,et al.  Arg-Gly-Asp: A versatile cell recognition signal , 1986, Cell.

[104]  L. Wyns,et al.  The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes , 2006, Molecular microbiology.

[105]  R. Brasseur,et al.  Atomic force microscopy of supported lipid bilayers , 2008, Nature Protocols.

[106]  N. Cho,et al.  Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly , 2013, Materials.

[107]  D. Pum,et al.  Solid supported lipid membranes: New concepts for the biomimetic functionalization of solid surfaces , 2008, Biointerphases.

[108]  P. T. Englund The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. , 1993, Annual review of biochemistry.

[109]  R. Richter,et al.  On the effect of the solid support on the interleaflet distribution of lipids in supported lipid bilayers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[110]  P. Cremer,et al.  The α,α-(1→1) Linkage of Trehalose Is Key to Anhydrobiotic Preservation , 2007 .

[111]  Yong Wang,et al.  Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. , 2013, Biomaterials.

[112]  M. Lackmann,et al.  Eph, a Protein Family Coming of Age: More Confusion, Insight, or Complexity? , 2008, Science Signaling.

[113]  A Wixforth,et al.  Transport, separation, and accumulation of proteins on supported lipid bilayers. , 2010, Nano letters.

[114]  Lance C. Kam,et al.  Patterning Hybrid Surfaces of Proteins and Supported Lipid Bilayers , 2000 .

[115]  A. Parikh,et al.  Evidence for leaflet-dependent redistribution of charged molecules in fluid supported phospholipid bilayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[116]  Kazuhiko Ishihara,et al.  Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces , 2012, Science and technology of advanced materials.

[117]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .

[118]  C. Britten,et al.  Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. , 2004, Molecular cancer therapeutics.

[119]  Fernando Albertorio,et al.  Fluid and air-stable lipopolymer membranes for biosensor applications. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[120]  L. Kam Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers. , 2009, Journal of structural biology.

[121]  P. Cremer,et al.  Multivalent ligand-receptor binding on supported lipid bilayers. , 2009, Journal of structural biology.

[122]  Harald Fuchs,et al.  Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. , 2007, Small.

[123]  P. Schwille,et al.  Minimal systems to study membrane-cytoskeleton interactions. , 2012, Current opinion in biotechnology.

[124]  Sanchao Liu,et al.  Planar supported bilayer polymers formed from bis-diene lipids by Langmuir-Blodgett deposition and UV irradiation. , 2003, Biomacromolecules.

[125]  A. Alessandrini,et al.  Phase transitions in supported lipid bilayers studied by AFM. , 2014, Soft matter.

[126]  H. Mao,et al.  Investigations of bivalent antibody binding on fluid-supported phospholipid membranes: the effect of hapten density. , 2003, Journal of the American Chemical Society.

[127]  A. Parikh,et al.  Liposil-supported lipid bilayers as a hybrid platform for drug delivery , 2011 .

[128]  Colin R. F. Monks,et al.  Three-dimensional segregation of supramolecular activation clusters in T cells , 1998, Nature.

[129]  Mark B. Carter,et al.  The Targeted Delivery of Multicomponent Cargos to Cancer Cells via Nanoporous Particle-Supported Lipid Bilayers , 2011, Nature materials.

[130]  T. Inaba,et al.  Polymerized lipid bilayers on a solid substrate: morphologies and obstruction of lateral diffusion. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[131]  R. Leventis,et al.  Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. , 2001, Biochemistry.

[132]  V Vécsei,et al.  Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. , 2002, Osteoarthritis and cartilage.

[133]  Viola Vogel,et al.  Bacterial Adhesion to Target Cells Enhanced by Shear Force , 2002, Cell.

[134]  S. Boxer,et al.  Model membrane systems and their applications. , 2007, Current opinion in chemical biology.

[135]  B. Gallois,et al.  Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair , 2011, Nature communications.

[136]  H. Mcconnell,et al.  Supported phospholipid bilayers. , 1985, Biophysical journal.

[137]  P. Eriksson,et al.  Supported phospholipid bilayers as a platform for neural progenitor cell culture. , 2008, Journal of biomedical materials research. Part A.

[138]  E Ruoslahti,et al.  RGD and other recognition sequences for integrins. , 1996, Annual review of cell and developmental biology.

[139]  N. Periasamy,et al.  Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. , 2003, Biophysical journal.

[140]  R. Richter,et al.  Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. , 2003, Biophysical journal.

[141]  P. Schwille,et al.  Biomimetic membrane systems to study cellular organization. , 2009, Journal of structural biology.

[142]  Lance C. Kam,et al.  Self-aligned supported lipid bilayers for patterning the cell-substrate interface. , 2009, Journal of the American Chemical Society.

[143]  A. Parikh,et al.  Phospholipid morphologies on photochemically patterned silane monolayers. , 2005, Journal of the American Chemical Society.

[144]  Matthias Franzreb,et al.  Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. , 2008, Small.

[145]  G. Veglia,et al.  Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays. , 2008, Journal of the American Chemical Society.

[146]  K. Briggs,et al.  Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. , 2002, The journal of knee surgery.

[147]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[148]  Lisandra L. Martin,et al.  Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities , 2013, International journal of molecular sciences.

[149]  S. Boxer,et al.  Stability of DNA-tethered lipid membranes with mobile tethers. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[150]  Maurine E. Linder,et al.  Protein lipidation , 2007 .

[151]  F. Höök,et al.  Hydrodynamic separation of proteins in supported lipid bilayers confined by gold barriers , 2013 .

[152]  S. Boxer,et al.  Substrate−Membrane Interactions: Mechanisms for Imposing Patterns on a Fluid Bilayer Membrane , 1998 .

[153]  R. Goody,et al.  Oriented immobilization of farnesylated proteins by the thiol-ene reaction. , 2010, Angewandte Chemie.

[154]  B. Kasemo,et al.  Well-defined lipid interfaces for protein adsorption studies. , 2012, Physical chemistry chemical physics : PCCP.

[155]  Y. Urano,et al.  Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity , 2014, Nature Communications.

[156]  Ling Chao,et al.  Creating air-stable supported lipid bilayers by physical confinement induced by phospholipase A2. , 2014, ACS applied materials & interfaces.

[157]  R. Neve,et al.  A Fluid Membrane‐Based Soluble Ligand‐Display System for Live‐Cell Assays , 2006, Chembiochem : a European journal of chemical biology.

[158]  K. Mossman,et al.  Altered TCR Signaling from Geometrically Repatterned Immunological Synapses , 2005, Science.

[159]  X. Chen,et al.  Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. , 2014, Biomaterials.

[160]  C. Grigoropoulos,et al.  Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels. , 2009, Nano letters.

[161]  Bruce K Gale,et al.  Stable, ligand-doped, poly(bis-SorbPC) lipid bilayer arrays for protein binding and detection. , 2009, ACS applied materials & interfaces.

[162]  M. Lösche,et al.  Zooming in on disordered systems: neutron reflection studies of proteins associated with fluid membranes. , 2014, Biochimica et biophysica acta.

[163]  S. Tosatti,et al.  Issues of ligand accessibility and mobility in initial cell attachment. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[164]  F. Höök,et al.  Spatial-resolution limits in mass spectrometry imaging of supported lipid bilayers and individual lipid vesicles. , 2010, Analytical chemistry.

[165]  D. O. Rudin,et al.  Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System , 1962, Nature.

[166]  Ying-Chih Chang,et al.  Effects of extracellular matrix protein functionalized fluid membrane on cell adhesion and matrix remodeling. , 2010, Biomaterials.

[167]  Fredrik Höök,et al.  A method improving the accuracy of fluorescence recovery after photobleaching analysis. , 2008, Biophysical journal.

[168]  C. Grigoropoulos,et al.  Bioelectronic silicon nanowire devices using functional membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[169]  E. Gizeli,et al.  Single-step formation of a biorecognition layer for assaying histidine-tagged proteins. , 2004, Analytical chemistry.

[170]  L. Tamm,et al.  Fluorescence microscopy to study domains in supported lipid bilayers. , 2007, Methods in molecular biology.

[171]  S. Boxer,et al.  Covalent attachment of lipid vesicles to a fluid-supported bilayer allows observation of DNA-mediated vesicle interactions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[172]  Muhammad Shuja Khan,et al.  Engineering Lipid Bilayer Membranes for Protein Studies , 2013, International journal of molecular sciences.

[173]  L. Bordenave,et al.  Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: An efficient platform for cell adhesion , 2007, Biointerphases.

[174]  P. Cremer,et al.  Supported bilayer electrophoresis under controlled buffer conditions. , 2011, Analytical chemistry.

[175]  F. Höök,et al.  Continuous lipid bilayers derived from cell membranes for spatial molecular manipulation. , 2011, Journal of the American Chemical Society.

[176]  S. Boxer,et al.  Micropatterning Fluid Lipid Bilayers on Solid Supports , 1997, Science.

[177]  V. Hlady,et al.  Ferritin adsorption to multicomponent monolayers: Influence of lipid charge density, miscibility and fluidity , 2000 .

[178]  J A Skinner,et al.  Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. , 2005, The Journal of bone and joint surgery. British volume.

[179]  L. Tamm,et al.  Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. , 2003, Biophysical journal.

[180]  K. Jacobson,et al.  Revisiting the fluid mosaic model of membranes. , 1995, Science.

[181]  P. Cremer,et al.  Multiplexing ligand-receptor binding measurements by chemically patterning microfluidic channels. , 2008, Analytical chemistry.

[182]  D. Pum,et al.  S-layer stabilized lipid membranes (Review) , 2008, Biointerphases.

[183]  D. Marsh Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. , 2007, Biophysical journal.

[184]  Chung-Yi Wu,et al.  Glycan arrays: biological and medical applications , 2008, Current Opinion in Chemical Biology.

[185]  J. Groves,et al.  EphA2 receptor activation by monomeric Ephrin-A1 on supported membranes. , 2011, Biophysical journal.

[186]  M. Schnabelrauch,et al.  Immobilization of chondroitin sulfate to lipid membranes and its interactions with ECM proteins. , 2013, Journal of colloid and interface science.

[187]  I. Levitan,et al.  Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. , 2007, Antioxidants & redox signaling.

[188]  S. Boxer,et al.  Vesicle fusion observed by content transfer across a tethered lipid bilayer. , 2011, Biophysical journal.

[189]  K. Tawa,et al.  Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy. , 2006, Biophysical journal.

[190]  Joachim P Spatz,et al.  Activation of integrin function by nanopatterned adhesive interfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[191]  S. Evans,et al.  Cholesterol-based anchors and tethers for phospholipid bilayers and for model biological membranes , 2010 .

[192]  M. Tirrell,et al.  A kinetic study of vesicle fusion on silicon dioxide surfaces by ellipsometry , 2006 .

[193]  Jean-Marie Denoix,et al.  Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. , 2014, Biochimica et biophysica acta.

[194]  L. Tamm,et al.  Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. , 1992, Biochimica et biophysica acta.

[195]  K. Ishihara,et al.  Surface grafting of biocompatible phospholipid polymer MPC provides wear resistance of tibial polyethylene insert in artificial knee joints. , 2010, Osteoarthritis and cartilage.

[196]  Petra Schwille,et al.  Myosin motors fragment and compact membrane-bound actin filaments , 2013, eLife.

[197]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .

[198]  E. London,et al.  Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[199]  W. Knoll Handbook of biofunctional surfaces , 2013 .

[200]  Mario Gimona,et al.  Assembly and biological role of podosomes and invadopodia. , 2008, Current opinion in cell biology.

[201]  Yue-xiao Shen,et al.  Towards supported bolaamphiphile membranes for water filtration: Roles of lipid and substrate , 2014 .

[202]  Paul S. Cremer,et al.  Formation and Spreading of Lipid Bilayers on Planar Glass Supports , 1999 .

[203]  L. Crowe Lessons from nature: the role of sugars in anhydrobiosis. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[204]  D. Schaffer,et al.  Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. , 2010, Biomaterials.

[205]  Lai-Xi Wang,et al.  Quantitative glycomics from fluidic glycan microarrays. , 2009, Journal of the American Chemical Society.

[206]  K. Torimitsu,et al.  Pattern formation and molecular transport of histidine-tagged GFPs using supported lipid bilayers. , 2010, Langmuir.

[207]  P. Cremer,et al.  Double cushions preserve transmembrane protein mobility in supported bilayer systems. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[208]  Siling Wang,et al.  PLGA-lipid liposphere as a promising platform for oral delivery of proteins. , 2014, Colloids and surfaces. B, Biointerfaces.

[209]  S. Krueger,et al.  Neutron Reflectivity and Atomic Force Microscopy Studies of a Lipid Bilayer in Water Adsorbed to the Surface of a Silicon Single Crystal , 1996 .

[210]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[211]  M. Riekkola,et al.  Stabilization of phosphatidylcholine coatings in capillary electrophoresis by increase in membrane rigidity. , 2004, Journal of chromatography. A.

[212]  Brisson,et al.  Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM. , 1998, Journal of structural biology.

[213]  Yves F Dufrêne,et al.  Nanoscale analysis of supported lipid bilayers using atomic force microscopy. , 2010, Biochimica et biophysica acta.

[214]  D. Engelman Membranes are more mosaic than fluid , 2005, Nature.

[215]  V. Freger,et al.  Fusion of bolaamphiphile micelles: a method to prepare stable supported biomimetic membranes. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[216]  J. Groves,et al.  Kinetic control of histidine-tagged protein surface density on supported lipid bilayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[217]  N. Cho,et al.  Alpha-helical peptide-induced vesicle rupture revealing new insight into the vesicle fusion process as monitored in situ by quartz crystal microbalance-dissipation and reflectometry. , 2009, Analytical chemistry.

[218]  Zhilei Zhao,et al.  Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water. , 2015, ACS applied materials & interfaces.

[219]  Petra Schwille,et al.  Reconstitution and Anchoring of Cytoskeleton inside Giant Unilamellar Vesicles , 2008, Chembiochem : a European journal of chemical biology.

[220]  Phillip L Geissler,et al.  Membrane-induced bundling of actin filaments. , 2008, Nature physics.

[221]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[222]  James L. Hougland,et al.  Getting a handle on protein prenylation. , 2009, Nature chemical biology.

[223]  U. Sleytr,et al.  Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules , 2014, Journal of The Royal Society Interface.

[224]  Fernanda F. Rossetti,et al.  Cell Differentiation of Pluripotent Tissue Sheets Immobilized on Supported Membranes Displaying Cadherin-11 , 2013, PloS one.

[225]  C. Lucy,et al.  Phospholipid bilayer coatings for the separation of proteins in capillary electrophoresis. , 2002, Analytical chemistry.

[226]  W. Knoll,et al.  Protein tethered lipid bilayer: An alternative mimic of the biological membrane (Mini Review) , 2008, Biointerphases.

[227]  C. CANALE,et al.  Force spectroscopy as a tool to investigate the properties of supported lipid membranes , 2010, Microscopy research and technique.

[228]  S. Boxer,et al.  Electric field-induced concentration gradients in planar supported bilayers. , 1995, Biophysical journal.

[229]  Jay T. Groves,et al.  Cluster size regulates protein sorting in the immunological synapse , 2009, Proceedings of the National Academy of Sciences.

[230]  C. Sharma,et al.  Cell mimetic lateral stabilization of outer cell mimetic bilayer on polymer surfaces by peptide bonding and their blood compatibility. , 2006, Journal of biomedical materials research. Part A.

[231]  E. Sackmann,et al.  Swelling behavior and viscoelasticity of ultrathin grafted hyaluronic acid films , 1999 .

[232]  R. Richter,et al.  Formation of solid-supported lipid bilayers: an integrated view. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[233]  P. Devaux,et al.  Protein involvement in transmembrane lipid asymmetry. , 1992, Annual review of biophysics and biomolecular structure.

[234]  S. Bromley,et al.  The immunological synapse: a molecular machine controlling T cell activation. , 1999, Science.

[235]  J. Rigaud,et al.  Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. , 1988, Biochemistry.

[236]  B. Kasemo,et al.  Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[237]  R. Pieters Maximising multivalency effects in protein-carbohydrate interactions. , 2009, Organic & biomolecular chemistry.

[239]  Cheng-han Yu,et al.  Curvature-modulated phase separation in lipid bilayer membranes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[240]  J. Parise,et al.  Reactivity of ferritin and the structure of ferritin-derived ferrihydrite. , 2010, Biochimica et biophysica acta.

[241]  Cheng-han Yu,et al.  Engineering supported membranes for cell biology , 2010, Medical & Biological Engineering & Computing.

[242]  A. Brisson,et al.  Free-standing lipid films stabilized by Annexin-A5. , 2013, Biochimica et biophysica acta.

[243]  T. Bjørnholm,et al.  Kinetics of degradation of dipalmitoylphosphatidylcholine (DPPC) bilayers as a result of vipoxin phospholipase A2 activity: an atomic force microscopy (AFM) approach. , 2011, Biochimica et biophysica acta.

[244]  A. Bershadsky,et al.  Integrin-Matrix Clusters Form Podosome-like Adhesions in the Absence of Traction Forces , 2013, Cell reports.

[245]  J. Groves,et al.  T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters , 2011, Proceedings of the National Academy of Sciences.

[246]  A. Parikh,et al.  On-demand self-assembly of supported membranes using sacrificial, anhydrobiotic sugar coats. , 2014, Journal of the American Chemical Society.

[247]  M. E. Leunissen,et al.  Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[248]  Feng Yi,et al.  Nanofiber-supported phospholipid bilayers , 2009 .

[249]  A. V. van Oijen,et al.  A versatile approach to the generation of fluid supported lipid bilayers and its applications , 2014, Biotechnology and bioengineering.

[250]  D. Daleke Regulation of transbilayer plasma membrane phospholipid asymmetry Published, JLR Papers in Press, December 16, 2002. DOI 10.1194/jlr.R200019-JLR200 , 2003, Journal of Lipid Research.

[251]  Y. Tatsu,et al.  Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[252]  M. Ornatska,et al.  Interaction of lipid membrane with nanostructured surfaces. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[253]  H. Nymeyer,et al.  Folding is not required for bilayer insertion: Replica exchange simulations of an α‐helical peptide with an explicit lipid bilayer , 2004, Proteins.

[254]  Gregory J. Hardy,et al.  Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. , 2013, Current opinion in colloid & interface science.

[255]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[256]  Jinjun Shi,et al.  Sub-100 nm patterning of supported bilayers by nanoshaving lithography. , 2008, Journal of the American Chemical Society.

[257]  S. Evans,et al.  Concentrating membrane proteins using asymmetric traps and AC electric fields. , 2011, Journal of the American Chemical Society.

[258]  Joe W. Gray,et al.  Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2 , 2010, Science.

[259]  C. Reich,et al.  Supplementary Material (ESI) for Soft Matter This journal is © The Royal Society of Chemistry 2009 Supplementary Information: Preparation of Fluid Tethered Lipid Bilayers on Poly(Ethylene Glycol) by Spin Coating , 2010 .

[260]  A. Parikh,et al.  Direct photochemical patterning and refunctionalization of supported phospholipid bilayers. , 2004, Journal of the American Chemical Society.

[261]  S. Boxer,et al.  Writing and Erasing Barriers to Lateral Mobility into Fluid Phospholipid Bilayers , 1999 .

[262]  N. Voelcker,et al.  Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study. , 2009, The journal of physical chemistry. B.

[263]  T. Charitat,et al.  Diffusion in supported lipid bilayers: Influence of substrate and preparation technique on the internal dynamics , 2009, The European physical journal. E, Soft matter.

[264]  S. Boxer,et al.  Arrays of mobile tethered vesicles on supported lipid bilayers. , 2003, Journal of the American Chemical Society.

[265]  Matthew Tirrell,et al.  Cell adhesion and growth to Peptide-patterned supported lipid membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[266]  T. Salditt,et al.  Preparation of Solid-Supported Lipid Bilayers by Spin-Coating , 2002 .

[267]  T Pawson,et al.  Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. , 1994, Science.

[268]  D. Soumpasis Theoretical analysis of fluorescence photobleaching recovery experiments. , 1983, Biophysical journal.

[269]  Horst Kessler,et al.  RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. , 2003, Biomaterials.

[270]  M. Textor,et al.  Supported lipid bilayer microarrays created by non-contact printing. , 2011, Lab on a chip.

[271]  S. Boxer,et al.  Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. , 2001, Journal of biomedical materials research.

[272]  S. Boxer,et al.  DNA-tethered membranes formed by giant vesicle rupture. , 2009, Journal of structural biology.

[273]  Lance Kam and,et al.  Formation of Supported Lipid Bilayer Composition Arrays by Controlled Mixing and Surface Capture , 2000 .

[274]  L. Kam,et al.  Lateral Mobility of E-Cadherin Enhances Rac1 Response in Epithelial Cells , 2010, Cellular and molecular bioengineering.

[275]  M. Sheetz,et al.  Spatial-temporal reorganization of activated integrins , 2012, Cell adhesion & migration.

[276]  A. Parikh,et al.  Glass bead probes of local structural and mechanical properties of fluid, supported membranes. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[277]  N. Cho,et al.  Type I collagen-functionalized supported lipid bilayer as a cell culture platform. , 2010, Biomacromolecules.

[278]  H. Kleinman,et al.  Neural cell response to multiple novel sites on laminin‐1 , 2000, Journal of neuroscience research.

[279]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[280]  Claudia Steinem,et al.  Impedance analysis of gramicidin D in pore-suspending membranes , 2009 .

[281]  G. Vancso,et al.  Surface-grafted zwitterionic polymers as platforms for functional supported phospholipid membranes , 2012 .

[282]  H. Kessler,et al.  Interface Immobilization Chemistry of cRGD-based Peptides Regulates Integrin Mediated Cell Adhesion , 2013, Advanced functional materials.

[283]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.

[284]  C. le Grimellec,et al.  Patterned domains of supported phospholipid bilayer using microcontact printing of Pll-g-PEG molecules. , 2012, Colloids and surfaces. B, Biointerfaces.

[285]  M. Textor,et al.  The study of polarisation in single cells using model cell membranes. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[286]  Barbara Ruozi,et al.  AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study , 2011, International journal of nanomedicine.

[287]  S. Boxer,et al.  Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry. , 2013, Journal of the American Chemical Society.