PROPERTIES OF MEROMORPHIC SOLUTIONS OF q-DIFFERENCE EQUATIONS

In this article, we utilize Nevanlinna value distribution theory to study the solvability and the growth of meromorphic function f(z) that satisfies some q-difference equations, which can be seen the q-difference analogues of Painlevé I and II equations. This article extends earlier results by Chen et al [2, 3].

[1]  Zong-Xuan Chen,et al.  The properties of the meromorphic solutions of some difference equations , 2011 .

[2]  R. Korhonen,et al.  On the Nevanlinna characteristic of f(qz) and its applications , 2010 .

[3]  Yunfei Du,et al.  Value distribution of meromorphic solutions of certain difference Painlevé equations , 2010 .

[4]  Chung-Chun Yang,et al.  Clunie theorems for difference and q‐difference polynomials , 2007 .

[5]  R. Korhonen,et al.  and meromorphic solutions of q-dierence equations , 2006 .

[6]  R. Korhonen,et al.  Finite‐order meromorphic solutions and the discrete Painlevé equations , 2005, nlin/0504026.

[7]  Chung-Chun Yang,et al.  Uniqueness Theory of Meromorphic Functions , 2004 .

[8]  K. M. Tamizhmani,et al.  The road to the discrete analogue of the Painlevé property: Nevanlinna meets singularity confinement , 2003 .

[9]  R. Goldstein On meromorphic solutions of certain functional equations , 1978 .

[10]  R. Goldstein Some Results on Factorisation of Meromorphic Functions , 1971 .

[11]  Richard P. Fuchs Sur quelque équations différentielles linéaires du second ordre , 1905 .

[12]  P. Painlevé,et al.  Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .

[13]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[14]  S. Pepin Sur les équations différentielles du second ordre , 1878 .